A multioctave coaxially oriented beam‐resonator arrangement Fourier‐transform microwave spectrometer

The design, performance, and operation of a broadband (3–26.5 GHz) high resolution microwave spectrometer is described. In comparison to previously developed molecular beam Fabry–Perot resonator spectrometers the design presented here implements some significant improvements: a coaxially oriented beam resonator arrangement (COBRA) formed by a confocal pair of mirrors incorporating an electromechanical valve and employing two pairs of microwave antennas, and a multioctave Fourier‐transform microwave (FTMW) instrument providing the pulsed excitation source with microwave pulse phase‐inversion scheme and the low‐noise receiving system employing image‐rejection downconversion with superheterodyne as well as quadrature detection. The entire apparatus, fully automated for scanning operation, covers a frequency range of more than three octaves. The novel design of the FTMW instrument does not require any changes of the spectrometer hardware in order to reach all regions of its spectral range. While operated in h...

[1]  A. Derome,et al.  Modern Nmr Techniques for Chemistry Research , 1987 .

[2]  G. T. Fraser,et al.  Microwave spectrum, structure, and electric dipole moment of ArCH3OH , 1989 .

[3]  Robert H. Dicke,et al.  Pulse Techniques in Microwave Spectroscopy , 1955 .

[4]  J. Gordon Variable Coupling Reflection Cavity for Microwave Spectroscopy , 1961 .

[5]  W. Flygare,et al.  Direct Measurement of Rotational Relaxation , 1966 .

[6]  R. Hill,et al.  Emission Microwave Spectroscopy: OCS , 1967 .

[7]  Wolfgang Stahl,et al.  A Molecular Beam Microwave Fourier Transform (MB-MWFT) Spectrometer with an Electric Discharge Nozzle , 1991 .

[8]  E. J. Campbell The Theory of Pulsed Fourier Transform Microwave Spectroscopy Carried out in a Fabry-Perot Cavity , 1981 .

[9]  E. J. Campbell,et al.  The gas dynamics of a pulsed supersonic nozzle molecular source as observed with a Fabry–Perot cavity microwave spectrometer , 1981 .

[10]  R. Dicke Coherence in Spontaneous Radiation Processes , 1954 .

[11]  W. Stahl,et al.  Microwave Fourier‐transform spectrometer for the entire K band for the investigation of rotational spectra of molecules in the gas phase , 1985 .

[12]  Hajime Ito,et al.  CO2 and CO laser microwave double resonance spectroscopy of OCS: Precise measurement of dipole moment and polarizability anisotropy , 1984 .

[13]  Mischa Schwartz,et al.  Information transmission, modulation, and noise , 1959 .

[14]  T. Poehler,et al.  Microwave time domain Fabry–Perot emission spectrometer , 1975 .

[15]  T. Schmalz,et al.  Transient emission, off‐resonant transient absorption, and Fourier transform microwave spectroscopy , 1974 .

[16]  J. Grabow,et al.  Notizen: A Pulsed Molecular Beam Microwave Fourier Transform Spectrometer with Parallel Molecular Beam and Resonator Axes , 1990 .

[17]  H. Kogelnik,et al.  Laser beams and resonators. , 1966, Applied optics.

[18]  Wolfgang Stahl,et al.  An automatic molecular beam microwave Fourier transform spectrometer , 1990 .

[19]  W. Flygare,et al.  Fabry–Perot cavity pulsed Fourier transform microwave spectrometer with a pulsed nozzle particle source , 1981 .

[20]  E. B. Wilson,et al.  A Microwave Spectrograph , 1947 .

[21]  Carl Chuang,et al.  Computer‐based controller and averager for the Balle‐Flygare spectrometer , 1990 .

[22]  Robert H. Dicke,et al.  New Technique for High-Resolution Microwave Spectroscopy , 1955 .

[23]  W. Flygare,et al.  Pulsed microwave Fourier transform spectrometer , 1976 .

[24]  T. Schmalz,et al.  Fast passage in rotational spectroscopy: Theory and experiment , 1974 .