NNCluster: An Efficient Clustering Algorithm for Road Network Trajectories

With the advent of ubiquitous computing, we can easily acquire the locations of moving objects. This paper studies clustering problems for trajectory data that is constrained by the road network. While many trajectory clustering algorithms have been proposed, they do not consider the spatial proximity of objects across the road network. For this kind of data, we propose a new distance measure that reflects the spatial proximity of vehicle trajectories on the road network, and an efficient clustering method that reduces the number of distance computations during the clustering process. Experimental results demonstrate that our proposed method correctly identifies clusters using real-life trajectory data yet reduces the distance computations by up to 80% against the baseline algorithm.

[1]  Bettina Speckmann,et al.  Efficient detection of motion patterns in spatio-temporal data sets , 2004, GIS '04.

[2]  Padhraic Smyth,et al.  Trajectory clustering with mixtures of regression models , 1999, KDD '99.

[3]  Jean-Philippe Thiran,et al.  Multi-Layer Hierarchical Clustering of Pedestrian Trajectories for Automatic Counting of People in Video Sequences , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[4]  Lei Chen,et al.  On The Marriage of Lp-norms and Edit Distance , 2004, VLDB.

[5]  Michalis Vazirgiannis,et al.  On Clustering Validation Techniques , 2001, Journal of Intelligent Information Systems.

[6]  Tetsuji Satoh,et al.  Shape-Based Similarity Query for Trajectory of Mobile Objects , 2003, Mobile Data Management.

[7]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[8]  Donald W. Bouldin,et al.  A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Thomas Eiter,et al.  Database Theory - Icdt 2005 , 2008 .

[10]  Christian S. Jensen,et al.  Discovery of convoys in trajectory databases , 2008, Proc. VLDB Endow..

[11]  Mubarak Shah,et al.  Multi feature path modeling for video surveillance , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[12]  Tapio Elomaa,et al.  A Voronoi Diagram Approach to Autonomous Clustering , 2006, Discovery Science.

[13]  Sergey Bereg,et al.  Voronoi Diagram of Polygonal Chains under the Discrete FRéChet Distance , 2007, Int. J. Comput. Geom. Appl..

[14]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[15]  Tieniu Tan,et al.  Semantic interpretation of object activities in a surveillance system , 2002, Object recognition supported by user interaction for service robots.

[16]  Xing Xie,et al.  Mining user similarity based on location history , 2008, GIS '08.

[17]  Raymond T. Ng,et al.  Indexing spatio-temporal trajectories with Chebyshev polynomials , 2004, SIGMOD '04.

[18]  Deok-Hwan Kim,et al.  Similarity search for multidimensional data sequences , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[19]  Ouri Wolfson,et al.  Nonmaterialized Motion Information in Transport Networks , 2005, ICDT.

[20]  Xing Xie,et al.  Mining interesting locations and travel sequences from GPS trajectories , 2009, WWW '09.

[21]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[22]  Dimitrios Gunopulos,et al.  Discovering similar multidimensional trajectories , 2002, Proceedings 18th International Conference on Data Engineering.

[23]  Anil K. Jain,et al.  A modified Hausdorff distance for object matching , 1994, Proceedings of 12th International Conference on Pattern Recognition.

[24]  Lei Chen,et al.  Robust and fast similarity search for moving object trajectories , 2005, SIGMOD '05.

[25]  Jianwen Su,et al.  One Way Distance: For Shape Based Similarity Search of Moving Object Trajectories , 2008, GeoInformatica.

[26]  Dieter Pfoser,et al.  On Map-Matching Vehicle Tracking Data , 2005, VLDB.