Optical Properties of a Particle above a Dielectric Interface: Cross Sections, Benchmark Calculations, and Analysis of the Intrinsic Substrate Effects

We show that the optical properties of a particle above a plane dielectric interface differ dramatically from those of the same particle embedded in a homogeneous matrix. Calculations for gold and silver spheres have been carried out in using the exact multipole expansion method, providing thus benchmark results for testing the accuracy of the available numerical methods. For silver spheres, the dependence of the extinction cross-section has been studied in detail as a function of the parameters characterizing the particle/interface system, namely, the radius of the sphere, the particle-surface distance, and the dielectric index of the substrate, as well as those characterizing the light excitation, that is, the angle of incidence and the polarization. Throughout this study we have separated the effects arising from the inhomogeneity of the applied field (interference between the incoming and reflected plane waves) from the intrinsic substrate effects resulting from the interaction with the induced surfac...

[1]  A. Modinos,et al.  Scattering of light from a two-dimensional array of spherical particles on a substrate , 1991 .

[2]  Gérard Gouesbet,et al.  Generalized Lorenz–Mie theory and applications , 2009 .

[3]  P. Nordlander,et al.  Plasmons in strongly coupled metallic nanostructures. , 2011, Chemical reviews.

[4]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[5]  Paul Mulvaney,et al.  Influence of particle-substrate interaction on localized plasmon resonances. , 2010, Nano letters.

[6]  Peter Nordlander,et al.  Substrates matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. , 2009, Nano letters.

[7]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticle Dimers , 2004 .

[8]  B. Reinhard,et al.  Correlated Optical Spectroscopy and Transmission Electron Microscopy of Individual Hollow Nanoparticles and their Dimers. , 2008, The journal of physical chemistry. C, Nanomaterials and interfaces.

[9]  J. Hafner,et al.  Localized surface plasmon resonance sensors. , 2011, Chemical reviews.

[10]  Peter Nordlander,et al.  Finite-Difference Time-Domain Modeling of the Optical Properties of Nanoparticles near Dielectric Substrates† , 2010 .

[11]  Dang Yuan Lei,et al.  Plasmonic hybridization between nanowires and a metallic surface: a transformation optics approach. , 2011, ACS nano.

[12]  E. Lacaze,et al.  Substrate Effect on the Plasmon Resonance of Supported Flat Silver Nanoparticles , 2011 .

[13]  K. Ohtaka,et al.  Optical Response of a Sphere Coupled to a Metal Substrate , 1987 .

[14]  R. Ruppin Surface modes of two spheres , 1982 .

[15]  S. Parola,et al.  Synthesis, electron tomography and single-particle optical response of twisted gold nano-bipyramids , 2012, Nanotechnology.

[16]  T. Götz,et al.  Characterization of large supported metal clusters by optical spectroscopy , 1995 .

[17]  J. Majimel,et al.  Surface plasmon resonance properties of single elongated nano-objects: gold nanobipyramids and nanorods. , 2012, Langmuir : the ACS journal of surfaces and colloids.

[18]  M. Broyer,et al.  Surface Plasmon Resonance of Single Gold Nanodimers near the Conductive Contact Limit , 2009 .

[19]  Glenn P. Goodrich,et al.  Scattering Spectra of Single Gold Nanoshells , 2004 .

[20]  Emil Prodan,et al.  Plasmon Hybridization in Nanoparticles near Metallic Surfaces , 2004 .

[21]  S. Maier,et al.  Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters. , 2011, Chemical reviews.

[22]  Ari Sihvola,et al.  Scattering by a small object close to an interface. I. Exact-image theory formulation , 1991 .

[23]  Guillaume Bachelier,et al.  Optical response of a single spherical particle in a tightly focused light beam: application to the spatial modulation spectroscopy technique. , 2008, Journal of the Optical Society of America. A, Optics, image science, and vision.

[24]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[25]  George C. Schatz,et al.  Nanosphere Lithography: Effect of the External Dielectric Medium on the Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles , 1999 .

[26]  Ari Sihvola,et al.  SCATTERING BY A SMALL OBJECT CLOSE TO AN INTERFACE. II, STUDY OF BACKSCATTERING , 1991 .

[27]  U. Kreibig,et al.  Substrate effect on the optical response of silver nanoparticles , 2004 .

[28]  Paul Mulvaney,et al.  Spectroscopy, Imaging, and Modeling of Individual Gold Decahedra , 2009 .

[29]  Y. Filinchuk,et al.  Tetrahedra system Cu4 OCl6 daca4: High-temperature manifold of molecular configurations governing low-temperature properties , 2008, 0801.1507.

[30]  Hai-Qing Lin,et al.  Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrates. , 2011, ACS nano.

[31]  David R. Smith,et al.  Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. , 2008, Nano letters.

[32]  D. Leonard,et al.  Correlated optical measurements and plasmon mapping of silver nanorods. , 2011, Nano letters.

[33]  Younan Xia,et al.  Correlated Rayleigh Scattering Spectroscopy and Scanning Electron Microscopy Studies of Au-Ag Bimetallic Nanoboxes and Nanocages. , 2007, The journal of physical chemistry. C, Nanomaterials and interfaces.

[34]  H. Ehrenreich,et al.  Optical Properties of Ag and Cu , 1962 .

[35]  Otto L. Muskens,et al.  OPTICAL EXTINCTION SPECTRUM OF A SINGLE METAL NANOPARTICLE: QUANTITATIVE CHARACTERIZATION OF A PARTICLE AND OF ITS LOCAL ENVIRONMENT , 2008 .

[36]  Younan Xia,et al.  Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. , 2006, The journal of physical chemistry. B.

[37]  T. Vo‐Dinh,et al.  Plasmonics of 3-D nanoshell dimers using multipole expansion and finite element method. , 2009, ACS nano.

[38]  Keiko Munechika,et al.  Plasmon Line Widths of Single Silver Nanoprisms as a Function of Particle Size and Plasmon Peak Position , 2007 .

[39]  F.Michael Kahnert,et al.  Numerical methods in electromagnetic scattering theory , 2003 .

[40]  P. Jain,et al.  Au nanoparticles target cancer , 2007 .

[41]  Thomas Wriedt,et al.  Comparison of computational scattering methods , 1998 .

[42]  George C. Schatz,et al.  Correlating the Structure, Optical Spectra, and Electrodynamics of Single Silver Nanocubes , 2009 .

[43]  Luis M. Liz-Marzán,et al.  Nanometals: Formation and color , 2004 .

[44]  George C. Schatz,et al.  Nanosphere Lithography: Effect of Substrate on the Localized Surface Plasmon Resonance Spectrum of Silver Nanoparticles , 2001 .

[45]  Wantai Yang,et al.  Correlating Plasmon Resonance Spectra with Three-Dimensional Morphology of Single Silver Nanoparticles , 2008 .

[46]  H. Elsayed-Ali,et al.  Correlation and Characterization of Three-Dimensional Morphologically Dependent Localized Surface Plasmon Resonance Spectra of Single Silver Nanoparticles Using Dark-Field Optical Microscopy and Spectroscopy and Atomic Force Microscopy , 2010 .

[47]  Identification of Multipolar Surface Plasmon Resonances in Triangular Silver Nanoprisms with Very High Aspect Ratios Using the DDA Method , 2009 .

[48]  M. Broyer,et al.  Correlation between the Extinction Spectrum of a Single Metal Nanoparticle and Its Electron Microscopy Image , 2008 .

[49]  I. Bizjak,et al.  Search for CP violation in the decay B0-->D*+/-D-/+. , 2004, Physical review letters.

[50]  George C. Schatz,et al.  Correlated Structure and Optical Property Studies of Plasmonic Nanoparticles , 2011 .

[51]  Bernhard Lamprecht,et al.  Spectroscopy of single metallic nanoparticles using total internal reflection microscopy , 2000 .

[52]  George C. Schatz,et al.  Nanosphere Lithography: Surface Plasmon Resonance Spectrum of a Periodic Array of Silver Nanoparticles by Ultraviolet−Visible Extinction Spectroscopy and Electrodynamic Modeling , 1999 .

[53]  L. Houben,et al.  Correlating electron tomography and plasmon spectroscopy of single noble metal core-shell nanoparticles. , 2012, Nano letters.

[54]  J. Hafner,et al.  Optical properties of star-shaped gold nanoparticles. , 2006, Nano letters.

[55]  M. Broyer,et al.  Optical properties of gold metal clusters: A time-dependent local-density-approximation investigation , 1998 .

[56]  Gorden Videen,et al.  Light scattering from a sphere on or near a surface , 1991 .

[57]  Adrian Doicu,et al.  Light scattering from a particle on or near a surface , 1998 .

[58]  Younan Xia,et al.  Localized surface plasmon resonance spectroscopy of single silver nanocubes. , 2005, Nano letters.

[59]  Adam Wax,et al.  Substrate effect on refractive index dependence of plasmon resonance for individual silver nanoparticles observed using darkfield microspectroscopy. , 2005, Optics express.

[60]  S. Link,et al.  Probing a century old prediction one plasmonic particle at a time. , 2010, Nano letters.

[61]  R. Barrera,et al.  Substrate effects on the optical properties of spheroidal nanoparticles , 2000 .

[62]  William L. Barnes,et al.  Sensitivity of Localized Surface Plasmon Resonances to Bulk and Local Changes in the Optical Environment , 2009 .

[63]  B. R. Johnson Light scattering from a spherical particle on a conducting plane. I: Normal incidence , 1992 .

[64]  Nassiredin M. Mojarad,et al.  Plasmon spectra of nanospheres under a tightly focused beam , 2007, 0711.3649.

[65]  Pae C. Wu,et al.  Shape matters: plasmonic nanoparticle shape enhances interaction with dielectric substrate. , 2011, Nano letters.

[66]  L. Liz‐Marzán,et al.  Modelling the optical response of gold nanoparticles. , 2008, Chemical Society reviews.

[67]  Prashant K. Jain,et al.  On the Universal Scaling Behavior of the Distance Decay of Plasmon Coupling in Metal Nanoparticle Pairs: A Plasmon Ruler Equation , 2007 .

[68]  Akira Kinbara,et al.  Optical effect of the substrate on the anomalous absorption of aggregated silver films , 1974 .

[69]  C. Noguez Surface Plasmons on Metal Nanoparticles: The Influence of Shape and Physical Environment , 2007 .

[70]  S. Link,et al.  Seeing double: coupling between substrate image charges and collective plasmon modes in self-assembled nanoparticle superstructures. , 2011, ACS nano.

[71]  L. Liz‐Marzán,et al.  Quantitative determination of the size dependence of surface plasmon resonance damping in single Ag@SiO(2) nanoparticles. , 2009, Nano letters.

[72]  P. Denti,et al.  Optical properties of a sphere in the vicinity of a plane surface , 1997 .

[73]  R. Ruppin,et al.  Surface modes and optical absorption of a small sphere above a substrate , 1983 .

[74]  J. Vlieger,et al.  Light scattering by a sphere on a substrate , 1986 .

[75]  B. R. Johnson Calculation of light scattering from a spherical particle on a surface by the multipole expansion method , 1995 .

[76]  A. Doicu,et al.  Non-axisymmetric models for light scattering from a particle on or near a plane surface , 2000 .

[77]  P. Nordlander,et al.  A Hybridization Model for the Plasmon Response of Complex Nanostructures , 2003, Science.

[78]  Jianfang Wang,et al.  Effect of the dielectric properties of substrates on the scattering patterns of gold nanorods. , 2011, ACS nano.

[79]  M. Broyer,et al.  Plasmon coupling in silver nanocube dimers: resonance splitting induced by edge rounding. , 2011, ACS nano.

[80]  R. W. Christy,et al.  Optical Constants of the Noble Metals , 1972 .