Exploiting Polyhedral Symmetries in Social Choice
暂无分享,去创建一个
[1] Alexander I. Barvinok,et al. A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[2] Dominique Lepelley,et al. On Ehrhart polynomials and probability calculations in voting theory , 2008, Soc. Choice Welf..
[3] William V. Gehrlein,et al. Voting Paradoxes and Group Coherence , 2011 .
[4] William V. Gehrlein. Condorcet efficiency of constant scoring rules for large electorates , 1985 .
[5] S. Berg,et al. A note on the paradox of voting: Anonymous preference profiles and May's formula , 1983 .
[6] Geoffrey Pritchard,et al. Probability calculations under the IAC hypothesis , 2007, Math. Soc. Sci..
[7] Vincent C. H. Chua,et al. Analytical representation of probabilities under the IAC condition , 2000, Soc. Choice Welf..
[8] Martin E. Dyer,et al. On the Complexity of Computing the Volume of a Polyhedron , 1988, SIAM J. Comput..
[9] Maurice Bruynooghe,et al. Algorithms for Weighted Counting over Parametric Polytopes: A Survey and a Practical Comparison , 2008, ITSL.
[10] Komei Fukuda,et al. Exact volume computation for polytopes: a practical study , 1996 .
[11] Murray Schechter,et al. INTEGRATION OVER A POLYHEDRON : AN APPLICATION OF THE FOURIER-MOTZKIN ELIMINATION METHOD , 1998 .
[12] E. Ehrhardt,et al. Sur un problème de géométrie diophantienne linéaire. II. , 1967 .
[13] Michael Joswig,et al. polymake: a Framework for Analyzing Convex Polytopes , 2000 .
[14] K. Arrow,et al. Social Choice and Individual Values , 1951 .
[15] Achill Schürmann,et al. C++ Tools for Exploiting Polyhedral Symmetries , 2010, ICMS.
[16] Peter C. Fishburn,et al. The probability of the paradox of voting: A computable solution , 1976 .
[17] F. Tabak,et al. Counting lattice points in polyhedra using the Ehrhart theory, applied to Voting theory , 2010 .