Soft List Decoding of Polar Codes

Soft-output (SO) decoding is proposed for the Logarithmic Successive Cancellation List (Log-SCL) polar decoder for the first time, by exploiting the left-to-right propagation of the Belief Propagation (BP) decoder, which opens new avenues for its employment in powerful turbo-receivers. In the case of decoding a half-rate polar code having a block length of 1024 bits, the proposed soft list polar decoder achieves a 1.5 dB Block Error Ratio (BLER) performance gain, <inline-formula><tex-math notation="LaTeX">$50\%$</tex-math></inline-formula> latency improvement and <inline-formula><tex-math notation="LaTeX">$26\%$</tex-math></inline-formula> complexity reduction, compared to the state-of-the-art SO Soft Cancellation (SCAN) polar decoder in a polar-coded Multiple-Input Multiple-Output (MIMO) system. Furthermore, we conceive a Memory-Efficient (ME) soft list polar decoder, which requires only <inline-formula><tex-math notation="LaTeX">$16\%$</tex-math></inline-formula> of the soft list polar decoder's memory, at the cost of slightly increased latency and complexity.

[1]  Xiaohu You,et al.  Belief Propagation Bit-Flip Decoder for Polar Codes , 2019, IEEE Access.

[2]  Alexander Vardy,et al.  Fast List Decoders for Polar Codes , 2015, IEEE Journal on Selected Areas in Communications.

[3]  Furkan Ercan,et al.  Improved Bit-Flipping Algorithm for Successive Cancellation Decoding of Polar Codes , 2019, IEEE Transactions on Communications.

[4]  John R. Barry,et al.  Low-Complexity Soft-Output Decoding of Polar Codes , 2014, IEEE Journal on Selected Areas in Communications.

[5]  Alexander Vardy,et al.  Fast Polar Decoders: Algorithm and Implementation , 2013, IEEE Journal on Selected Areas in Communications.

[6]  Alexander Vardy,et al.  List decoding of polar codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[7]  Lajos Hanzo,et al.  Polar Codes and Their Quantum-Domain Counterparts , 2019, IEEE Communications Surveys & Tutorials.

[8]  Zhongfeng Wang,et al.  A memory efficient belief propagation decoder for polar codes , 2015, China Communications.

[9]  Warren J. Gross,et al.  Fast and Flexible Successive-Cancellation List Decoders for Polar Codes , 2017, IEEE Transactions on Signal Processing.

[10]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[11]  Jiaru Lin,et al.  Polar-Coded MIMO Systems , 2018, IEEE Transactions on Vehicular Technology.

[12]  Xiaohu You,et al.  Joint Detection and Decoding for Polar Coded MIMO Systems , 2017, GLOBECOM 2017 - 2017 IEEE Global Communications Conference.

[13]  Lajos Hanzo,et al.  CRC-Aided Logarithmic Stack Decoding of Polar Codes for Ultra Reliable Low Latency Communication in 3GPP New Radio , 2019, IEEE Access.

[14]  Alexios Balatsoukas-Stimming,et al.  LLR-Based Successive Cancellation List Decoding of Polar Codes , 2013, IEEE Transactions on Signal Processing.

[15]  Furkan Ercan,et al.  Memory-Efficient Polar Decoders , 2017, IEEE Journal on Emerging and Selected Topics in Circuits and Systems.

[16]  Xiaohu You,et al.  An Improved Software List Sphere Polar Decoder With Synchronous Determination , 2019, IEEE Transactions on Vehicular Technology.

[17]  E. Arıkan Polar codes : A pipelined implementation , 2010 .

[18]  Guido Masera,et al.  Implementation of a Flexible LDPC Decoder , 2007, IEEE Transactions on Circuits and Systems II: Express Briefs.

[19]  Keshab K. Parhi,et al.  Early Stopping Criteria for Energy-Efficient Low-Latency Belief-Propagation Polar Code Decoders , 2014, IEEE Transactions on Signal Processing.