Dissection of the Octoploid Strawberry Genome by Deep Sequencing of the Genomes of Fragaria Species

Cultivated strawberry (Fragaria x ananassa) is octoploid and shows allogamous behaviour. The present study aims at dissecting this octoploid genome through comparison with its wild relatives, F. iinumae, F. nipponica, F. nubicola, and F. orientalis by de novo whole-genome sequencing on an Illumina and Roche 454 platforms. The total length of the assembled Illumina genome sequences obtained was 698 Mb for F. x ananassa, and ∼200 Mb each for the four wild species. Subsequently, a virtual reference genome termed FANhybrid_r1.2 was constructed by integrating the sequences of the four homoeologous subgenomes of F. x ananassa, from which heterozygous regions in the Roche 454 and Illumina genome sequences were eliminated. The total length of FANhybrid_r1.2 thus created was 173.2 Mb with the N50 length of 5137 bp. The Illumina-assembled genome sequences of F. x ananassa and the four wild species were then mapped onto the reference genome, along with the previously published F. vesca genome sequence to establish the subgenomic structure of F. x ananassa. The strategy adopted in this study has turned out to be successful in dissecting the genome of octoploid F. x ananassa and appears promising when applied to the analysis of other polyploid plant species.

[1]  Q. Gao,et al.  Genome-wide identification and comparative expression analysis of NBS-LRR-encoding genes upon Colletotrichum gloeosporioides infection in two ecotypes of Fragaria vesca. , 2013, Gene.

[2]  Jacob A. Tennessen,et al.  Targeted Sequence Capture Provides Insight into Genome Structure and Genetics of Male Sterility in a Gynodioecious Diploid Strawberry, Fragaria vesca ssp. bracteata (Rosaceae) , 2013, G3: Genes, Genomes, Genetics.

[3]  Christina E. Wells,et al.  The high-quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution , 2013, Nature Genetics.

[4]  Jun Wang,et al.  The genome of the pear (Pyrus bretschneideri Rehd.) , 2013, Genome research.

[5]  S. Tabata,et al.  Construction of an Integrated High Density Simple Sequence Repeat Linkage Map in Cultivated Strawberry (Fragaria × ananassa) and its Applicability , 2012, DNA research : an international journal for rapid publication of reports on genes and genomes.

[6]  John Z. Yu,et al.  The draft genome of a diploid cotton Gossypium raimondii , 2012, Nature Genetics.

[7]  Saravanaraj N. Ayyampalayam,et al.  The banana (Musa acuminata) genome and the evolution of monocotyledonous plants , 2012, Nature.

[8]  M. Albani,et al.  Mutation in TERMINAL FLOWER1 Reverses the Photoperiodic Requirement for Flowering in the Wild Strawberry Fragaria vesca1[W] , 2012, Plant Physiology.

[9]  M. Schatz,et al.  Current challenges in de novo plant genome sequencing and assembly , 2012, Genome Biology.

[10]  C. Buell,et al.  Advances in plant genome sequencing. , 2012, The Plant journal : for cell and molecular biology.

[11]  Erchin Serpedin,et al.  Review of General Algorithmic Features for Genome Assemblers for Next Generation Sequencers , 2012, Genom. Proteom. Bioinform..

[12]  D. Sargent,et al.  A microsatellite linkage map for the cultivated strawberry (Fragaria × ananassa) suggests extensive regions of homozygosity in the genome that may have resulted from breeding and selection , 2012, Theoretical and Applied Genetics.

[13]  Xun Xu,et al.  The genome of Prunus mume , 2012, Nature Communications.

[14]  T. Davis,et al.  Conservation and loss of ribosomal RNA gene sites in diploid and polyploid Fragaria (Rosaceae) , 2011, BMC Plant Biology.

[15]  Sean R. Eddy,et al.  Accelerated Profile HMM Searches , 2011, PLoS Comput. Biol..

[16]  David M. A. Martin,et al.  Genome sequence and analysis of the tuber crop potato , 2011, Nature.

[17]  M. Kunihisa Studies using DNA markers in Fragaria×ananassa: genetic analysis, genome structure, and cultivar identification , 2011 .

[18]  Carl Kingsford,et al.  A fast, lock-free approach for efficient parallel counting of occurrences of k-mers , 2011, Bioinform..

[19]  Henry D. Priest,et al.  The genome of woodland strawberry (Fragaria vesca) , 2011, Nature Genetics.

[20]  L. Keller,et al.  The genome of the fire ant Solenopsis invicta , 2011, Proceedings of the National Academy of Sciences.

[21]  José M. Sempere,et al.  The Gypsy Database (GyDB) of mobile genetic elements: release 2.0 , 2010, Nucleic Acids Res..

[22]  Roger E Bumgarner,et al.  The genome of the domesticated apple (Malus × domestica Borkh.) , 2010, Nature Genetics.

[23]  S. Koren,et al.  Assembly algorithms for next-generation sequencing data. , 2010, Genomics.

[24]  Huanming Yang,et al.  De novo assembly of human genomes with massively parallel short read sequencing. , 2010, Genome research.

[25]  G. Staudt Strawberry biogeography, genetics and systematics , 2009 .

[26]  B. Denoyes-Rothan,et al.  Tracking the evolutionary history of polyploidy in Fragaria L. (strawberry): new insights from phylogenetic analyses of low-copy nuclear genes. , 2009, Molecular phylogenetics and evolution.

[27]  Kim E. Hummer,et al.  Decaploidy in Fragaria iturupensis (Rosaceae). , 2009, American journal of botany.

[28]  Robert Kofler,et al.  SciRoKo: a new tool for whole genome microsatellite search and investigation , 2007, Bioinform..

[29]  Robert D. Finn,et al.  New developments in the InterPro database , 2007, Nucleic Acids Res..

[30]  Adam Godzik,et al.  Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences , 2006, Bioinform..

[31]  Hidetoshi Shimodaira,et al.  Pvclust: an R package for assessing the uncertainty in hierarchical clustering , 2006, Bioinform..

[32]  R. Chetelat,et al.  Cytogenetics and Evolution , 2006 .

[33]  Rolf Apweiler,et al.  InterProScan: protein domains identifier , 2005, Nucleic Acids Res..

[34]  Valer Gotea,et al.  Mastering seeds for genomic size nucleotide BLAST searches. , 2003, Nucleic acids research.

[35]  Mario Stanke,et al.  Gene prediction with a hidden Markov model and a new intron submodel , 2003, ECCB.

[36]  W. J. Kent,et al.  BLAT--the BLAST-like alignment tool. , 2002, Genome research.

[37]  K. Fukui,et al.  Estimation of the nuclear DNA content of strawberries (Fragaria spp.) compared with Arabidopsis thaliana by using dual-step flow cytometry , 2001 .

[38]  J. Jurka,et al.  Repeats in genomic DNA: mining and meaning. , 1998, Current opinion in structural biology.

[39]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[40]  S. Eddy,et al.  tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. , 1997, Nucleic acids research.

[41]  R. S. Bringhurst Cytogenetics and Evolution in American Fragaria , 1990 .

[42]  D. Lipman,et al.  Improved tools for biological sequence comparison. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[43]  R. S. Bringhurst,et al.  Origin of Fragaria polyploids. I. Cytological analysis , 1967 .

[44]  Pavel A. Pevzner,et al.  De novo identification of repeat families in large genomes , 2005, ISMB.

[45]  R. E. Harrison,et al.  Phylogenetic Relationships Among Species of Fragaria (Rosaceae) Inferred from Non-coding Nuclear and Chloroplast DNA Sequences , 2000 .

[46]  B. Holland Fruit and nuts , 1992 .

[47]  G. Darrow The strawberry : history, breeding and physiology , 1966 .