Gradient flows and double bracket equations

Abstract A unified extension of the gradient flows and the double bracket equations of Chu–Driessel and Brockett is obtained in the frame work of reductive Lie groups. We examine the gradient flows on the orbit in the Cartan subspace of a reductive Lie algebra, under the adjoint action. The results of Chu–Driessel and Brockett are corresponding to the reductive groups GL(n, R ) and O(p,q).

[1]  A. W. Knapp Lie groups beyond an introduction , 1988 .

[2]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[3]  T. Tam An extension of a result of Lewis , 1999 .

[4]  Distance to the convex hull of an orbit under the action of a compact Lie group , 1999 .

[5]  R. Bott ON TORSION IN LIE GROUPS. , 1954, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Moody T. Chu,et al.  Constructing a Hermitian Matrix from Its Diagonal Entries and Eigenvalues , 1995, SIAM J. Matrix Anal. Appl..

[7]  R. Brockett,et al.  Completely integrable gradient flows , 1992 .

[8]  S. Helgason LIE GROUPS AND SYMMETRIC SPACES. , 1968 .

[9]  Michael E. Taylor,et al.  Differential Geometry I , 1994 .

[10]  R. Brockett Dynamical systems that sort lists, diagonalize matrices, and solve linear programming problems , 1991 .

[11]  B. Kostant On convexity, the Weyl group and the Iwasawa decomposition , 1973 .

[12]  Moody T. Chu,et al.  Inverse Eigenvalue Problems , 1998, SIAM Rev..

[13]  V. Varadarajan The Method of Stationary Phase and Applications to Geometry and Analysis on Lie Groups , 1997 .

[14]  Kenneth R. Driessel,et al.  The projected gradient methods for least squares matrix approximations with spectral constraints , 1990 .

[15]  W. Greub Linear Algebra , 1981 .

[16]  Johannes J. Duistermaat,et al.  Functions, flows and oscillatory integrals on flag manifolds and conjugacy classes in real semisimple Lie groups , 1983 .