MAGNETIC NANOPARTICLE HYPERTHERMIA IN CANCER TREATMENT.

The activation of magnetic nanoparticles (mNPs) by an alternating magnetic field (AMF) is currently being explored as technique for targeted therapeutic heating of tumors. Various types of superparamagnetic and ferromagnetic particles, with different coatings and targeting agents, allow for tumor site and type specificity. Magnetic nanoparticle hyperthermia is also being studied as an adjuvant to conventional chemotherapy and radiation therapy. This review provides an introduction to some of the relevant biology and materials science involved in the technical development and current and future use of mNP hyperthermia as clinical cancer therapy.

[1]  Hari Singh Nalwa,et al.  Encyclopedia of nanoscience and nanotechnology , 2011 .

[2]  Ralph Weissleder,et al.  Title: Self-assembled Multifunctional Fe/mgo Nanospheres for Magnetic Resonance Imaging and Self-assembled Multifunctional Fe/mgo Nanospheres for Magnetic Resonance Imaging and Hyperthermia , 2022 .

[3]  I. Baker,et al.  Surface Engineering of Core/Shell Iron/Iron Oxide Nanoparticles from Microemulsions for Hyperthermia. , 2010, Materials science & engineering. C, Materials for biological applications.

[4]  O. Gorbenko,et al.  Ag-doped manganite nanoparticles: new materials for temperature-controlled medical hyperthermia. , 2009, Journal of biomedical materials research. Part A.

[5]  R Ivkov,et al.  Nearly complete regression of tumors via collective behavior of magnetic nanoparticles in hyperthermia , 2009, Nanotechnology.

[6]  Changsheng Liu,et al.  In vitro macrophage uptake and in vivo biodistribution of long-circulation nanoparticles with poly(ethylene-glycol)-modified PLA (BAB type) triblock copolymer. , 2009, Colloids and surfaces. B, Biointerfaces.

[7]  R. Gurny,et al.  Localization and quantification of biodegradable particles in an intestinal cell model: the influence of particle size. , 2009, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[8]  P. J. Hoopes,et al.  Iron oxide nanoparticle hyperthermia and radiation cancer treatment , 2009, BiOS.

[9]  R Ivkov,et al.  Assessment of intratumor non-antibody directed iron oxide nanoparticle hyperthermia cancer therapy and antibody directed IONP uptake in murine and human cells , 2009, BiOS.

[10]  Rr Strawbridge,et al.  Iron oxide nanoparticle hyperthermia and chemotherapy cancer treatment , 2009, BiOS.

[11]  P J Hoopes,et al.  An in vivo transmission electron microscopy study of injected dextran-coated iron-oxide nanoparticle location in murine breast adenocarcinoma tumors versus time , 2009, BiOS.

[12]  T. Ryan Energy-based Treatment of Tissue and Assessment VI , 2009 .

[13]  Howard L McLeod,et al.  Platinum neurotoxicity pharmacogenetics , 2009, Molecular Cancer Therapeutics.

[14]  Tsuneo Imai,et al.  Anti-cancer effect of hyperthermia on breast cancer by magnetite nanoparticle-loaded anti-HER2 immunoliposomes , 2009, Breast Cancer Research and Treatment.

[15]  C. Wilhelm,et al.  Optimizing magnetic nanoparticle design for nanothermotherapy. , 2008, Nanomedicine.

[16]  Traugott E. Fischer,et al.  Materials Science for Engineering Students , 2008 .

[17]  R. Venkatasubramanian,et al.  A stimulus-responsive magnetic nanoparticle drug carrier: magnetite encapsulated by chitosan-grafted-copolymer. , 2008, Acta biomaterialia.

[18]  C. Robic,et al.  Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. , 2008, Chemical reviews.

[19]  Leslie L Robison,et al.  Acute lymphoblastic leukaemia , 2018, Radiopaedia.org.

[20]  A. Jemal,et al.  Cancer Statistics, 2008 , 2008, CA: a cancer journal for clinicians.

[21]  Xu Wang,et al.  Application of Nanotechnology in Cancer Therapy and Imaging , 2008, CA: a cancer journal for clinicians.

[22]  King C. P. Li,et al.  Augmentation of targeted delivery with pulsed high intensity focused ultrasound , 2008, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[23]  R. Misra,et al.  Magnetic drug-targeting carrier encapsulated with thermosensitive smart polymer: core-shell nanoparticle carrier and drug release response. , 2007, Acta biomaterialia.

[24]  J. Overgaard,et al.  Hyperthermia: a potent enhancer of radiotherapy. , 2007, Clinical oncology (Royal College of Radiologists (Great Britain)).

[25]  Q. Pankhurst,et al.  Size and Concentration Effects on High Frequency Hysteresis of Iron Oxide Nanoparticles , 2007, IEEE Transactions on Magnetics.

[26]  Arutselvan Natarajan,et al.  Thermal dosimetry predictive of efficacy of 111In-ChL6 nanoparticle AMF--induced thermoablative therapy for human breast cancer in mice. , 2007, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[27]  W. Cai,et al.  Facile synthesis of superparamagnetic magnetite nanoparticles in liquid polyols. , 2007, Journal of colloid and interface science.

[28]  R. Bristow,et al.  Novel chemical enhancers of heat shock increase thermal radiosensitization through a mitotic catastrophe pathway. , 2007, Cancer research.

[29]  Khaled Greish,et al.  Enhanced permeability and retention of macromolecular drugs in solid tumors: A royal gate for targeted anticancer nanomedicines , 2007, Journal of drug targeting.

[30]  Norased Nasongkla,et al.  Functionalized Micellar Systems for Cancer Targeted Drug Delivery , 2007, Pharmaceutical Research.

[31]  M. Young,et al.  Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. , 2006, Journal of the American Chemical Society.

[32]  S. Dutz,et al.  INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS: CONDENSED MATTER , 2005 .

[33]  D. A. Russell,et al.  Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a ‘Trojan horse’ , 2006, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[34]  Sébastien Vasseur,et al.  Lanthanum manganese perovskite nanoparticles as possible in vivo mediators for magnetic hyperthermia , 2006 .

[35]  Etienne Duguet,et al.  Magnetic nanoparticle design for medical applications , 2006 .

[36]  Charles R. Sullivan,et al.  Heat deposition in iron oxide and iron nanoparticles for localized hyperthermia , 2006 .

[37]  M. Zahn,et al.  Dynamic characteristics of superparamagnetic iron oxide nanoparticles in a viscous fluid under an external magnetic field , 2006, IEEE Transactions on Magnetics.

[38]  C. Xie,et al.  Using anti-VEGF McAb and magnetic nanoparticles as double-targeting vector for the radioimmunotherapy of liver cancer. , 2006, Cancer letters.

[39]  Peter Wust,et al.  Intracranial Thermotherapy using Magnetic Nanoparticles Combined with External Beam Radiotherapy: Results of a Feasibility Study on Patients with Glioblastoma Multiforme , 2006, Journal of Neuro-Oncology.

[40]  Wolfgang Daum,et al.  Application of High Amplitude Alternating Magnetic Fields for Heat Induction of Nanoparticles Localized in Cancer , 2005, Clinical Cancer Research.

[41]  R. Ivkov,et al.  Development of Tumor Targeting Bioprobes (111In-Chimeric L6 Monoclonal Antibody Nanoparticles) for Alternating Magnetic Field Cancer Therapy , 2005, Clinical Cancer Research.

[42]  D. Jaillard,et al.  Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. , 2005, Bioconjugate chemistry.

[43]  P. Hudson,et al.  Engineered antibody fragments and the rise of single domains , 2005, Nature Biotechnology.

[44]  F. Dumitrache,et al.  Combining resonant/non-resonant processes: Nanometer-scale iron-based material preparation via CO2 laser pyrolysis , 2005 .

[45]  Ajay Kumar Gupta,et al.  Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. , 2005, Biomaterials.

[46]  T. Hyeon,et al.  One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. , 2005, Angewandte Chemie.

[47]  Etienne Duguet,et al.  A method for synthesis and functionalization of ultrasmall superparamagnetic covalent carriers based on maghemite and dextran , 2005 .

[48]  Tapas Sen,et al.  Multifunctional magnetite and silica–magnetite nanoparticles: Synthesis, surface activation and applications in life sciences , 2005 .

[49]  C. Serna,et al.  Surface characterisation of dextran-coated iron oxide nanoparticles prepared by laser pyrolysis and coprecipitation , 2005 .

[50]  Y. Haik,et al.  Synthesis and characterization of polymer encapsulated Cu–Ni magnetic nanoparticles for hyperthermia applications , 2005 .

[51]  Inga Ennen,et al.  Ferromagnetic FeCo nanoparticles for biotechnology , 2005 .

[52]  L. Juillerat-Jeanneret,et al.  Development of functionalized superparamagnetic iron oxide nanoparticles for interaction with human cancer cells. , 2005, Biomaterials.

[53]  D. Leslie-Pelecky,et al.  Iron oxide nanoparticles for sustained delivery of anticancer agents. , 2005, Molecular pharmaceutics.

[54]  Sung-chul Shin,et al.  Magnetic enhancement of iron oxide nanoparticles encapsulated with poly(d,l-latide-co-glycolide) , 2005 .

[55]  Yang-Chuang Chang,et al.  Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4 magnetic nanoparticles for removal of Cu(II) ions. , 2005, Journal of colloid and interface science.

[56]  Werner A. Kaiser,et al.  Enhancement of AC-losses of magnetic nanoparticles for heating applications , 2004 .

[57]  Rong Zhou,et al.  Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery. , 2004, Academic radiology.

[58]  Hiroyuki Honda,et al.  Magnetite nanoparticle-loaded anti-HER2 immunoliposomes for combination of antibody therapy with hyperthermia. , 2004, Cancer letters.

[59]  S. Veintemillas-Verdaguer,et al.  Colloidal dispersions of maghemite nanoparticles produced by laser pyrolysis with application as NMR contrast agents , 2004 .

[60]  H. Toma,et al.  Preparation and characterization of (3-aminopropyl) triethoxysilane-coated magnetite nanoparticles , 2004 .

[61]  J. H. Kim,et al.  Effects of intraperitoneal hyperthermic chemotherapy in ovarian cancer. , 2004, Gynecologic oncology.

[62]  M. Broggini,et al.  New molecules and strategies in the field of anticancer agents. , 2004, Current medicinal chemistry. Anti-cancer agents.

[63]  A. Caneschi,et al.  Nanosized iron oxide particles entrapped in pseudo-single crystals of γ-cyclodextrin , 2004 .

[64]  V. S. Abraham,et al.  Magnetic field induced assembling of nanoparticles in ferrofluidic liquid thin films based on NixFe1−xFe2O4 , 2004 .

[65]  Mary Elizabeth Williams,et al.  Synthesis of Fe Oxide Core/Au Shell Nanoparticles by Iterative Hydroxylamine Seeding , 2004 .

[66]  Hiroyuki Honda,et al.  Heat shock protein 70 gene therapy combined with hyperthermia using magnetic nanoparticles , 2003, Cancer Gene Therapy.

[67]  S. Veintemillas-Verdaguer,et al.  Contrast agents for MRI based on iron oxide nanoparticles prepared by laser pyrolysis , 2003 .

[68]  H. Bönnemann,et al.  A size-selective synthesis of air stable colloidal magnetic cobalt nanoparticles , 2003 .

[69]  Q. Pankhurst,et al.  TOPICAL REVIEW: Applications of magnetic nanoparticles in biomedicine , 2003 .

[70]  Shouheng Sun,et al.  Magnetic relaxation of diluted and self-assembled cobalt nanocrystals , 2003 .

[71]  Hiroyuki Honda,et al.  Tumor regression by combined immunotherapy and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma , 2003, Cancer science.

[72]  Y. Nishimura,et al.  The effect of various chemotherapeutic agents given with mild hyperthermia on different types of tumours , 2003, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[73]  Jyotsnendu Giri,et al.  Investigation on Tc tuned nano particles of magnetic oxides for hyperthermia applications. , 2003, Bio-medical materials and engineering.

[74]  Ingrid Hilger,et al.  Thermal Ablation of Tumors Using Magnetic Nanoparticles: An In Vivo Feasibility Study , 2002, Investigative radiology.

[75]  P. Wust,et al.  Hyperthermia in combined treatment of cancer. , 2002, The Lancet Oncology.

[76]  Nathan Kohler,et al.  Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. , 2002, Biomaterials.

[77]  Y Rabin,et al.  Is intracellular hyperthermia superior to extracellular hyperthermia in the thermal sense? , 2002, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[78]  O. Kuznetsov,et al.  "SMART" MEDIATORS FOR SELF-CONTROLLED INDUCTIVE HEATING , 2002 .

[79]  M. Dewhirst,et al.  The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. , 2001, Advanced drug delivery reviews.

[80]  C. Serna,et al.  Sol-gel formation of γ-Fe2O3/SiO2 nanocomposites , 2001 .

[81]  S M Moghimi,et al.  Long-circulating and target-specific nanoparticles: theory to practice. , 2001, Pharmacological reviews.

[82]  Jeff W. M. Bulte,et al.  Synthesis and Characterization of Soluble Iron Oxide−Dendrimer Composites , 2001 .

[83]  J. Hoeijmakers Genome maintenance mechanisms for preventing cancer , 2001, Nature.

[84]  H. Maeda The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting. , 2001, Advances in enzyme regulation.

[85]  W Andrä,et al.  Electromagnetic heating of breast tumors in interventional radiology: in vitro and in vivo studies in human cadavers and mice. , 2001, Radiology.

[86]  H. Kampinga,et al.  Hyperthermic radiosensitization: mode of action and clinical relevance , 2001, International journal of radiation biology.

[87]  Jon Dobson,et al.  Structural and magnetic properties of nanoscale iron oxide particles synthesized in the presence of dextran or polyvinyl alcohol , 2001 .

[88]  C. Sangregorio,et al.  A new method for the synthesis of magnetoliposomes , 1999 .

[89]  W. Kaiser,et al.  Temperature distribution as function of time around a small spherical heat source of local magnetic hyperthermia , 1999 .

[90]  Peter Wust,et al.  Endocytosis of dextran and silan-coated magnetite nanoparticles and the effect of intracellular hyperthermia on human mammary carcinoma cells in vitro , 1999 .

[91]  P. Huang,et al.  Atomic Force Microscopy and Surface Characteristics of Iron Oxides Formed in Citrate Solutions , 1999 .

[92]  E. Rosen,et al.  The molecular and cellular basis of radiosensitivity: implications for understanding how normal tissues and tumors respond to therapeutic radiation. , 1999, Cancer investigation.

[93]  W. Kaiser,et al.  Physical limits of hyperthermia using magnetite fine particles , 1998 .

[94]  Dairong Chen,et al.  Hydrothermal synthesis and characterization of nanocrystalline Fe3O4 powders , 1998 .

[95]  C. Serna,et al.  Continuous production of γ-Fe2O3 ultrafine powders by laser pyrolysis , 1998 .

[96]  Stephen Mann,et al.  Biomimetic Synthesis and Characterization of Magnetic Proteins (Magnetoferritin) , 1998 .

[97]  C. Bloomfield,et al.  All-trans-retinoic acid in acute promyelocytic leukemia. , 1997, The New England journal of medicine.

[98]  F. Monte,et al.  Formation of γ-Fe2O3 Isolated Nanoparticles in a Silica Matrix , 1997 .

[99]  M Oudkerk,et al.  Hepatic lesions: detection with ferumoxide-enhanced T1-weighted MR imaging. , 1997, Radiology.

[100]  S. Mann,et al.  Properties of magnetoferritin: a novel biomagnetic nanoparticle , 1997 .

[101]  Urs O. Häfeli,et al.  Scientific and clinical applications of magnetic carriers , 1997 .

[102]  P. Wust,et al.  Magnetic Fluid Hyperthermia (MFH) , 1997 .

[103]  P. Bunn,et al.  Physical Chemistry and in Vivo Tissue Heating Properties of Colloidal Magnetic Iron Oxides with Increased Power Absorption Rates , 1997 .

[104]  S. Armes,et al.  Synthesis and characterization of polypyrrole-magnetite-silica particles , 1996 .

[105]  I. Lucet,et al.  Development of superparamagnetic nanoparticles for MRI: effect of particle size, charge and surface nature on biodistribution. , 1996, Journal of microencapsulation.

[106]  V. Torchilin,et al.  Which polymers can make nanoparticulate drug carriers long-circulating? , 1995 .

[107]  Sophie Neveu,et al.  Synthesis of very fine maghemite particles , 1995 .

[108]  C. Serna,et al.  Preparation of uniform γ-Fe2O3 particles with nanometer size by spray pyrolysis , 1993 .

[109]  C. Chou,et al.  Use of thermocouples in the intense fields of ferromagnetic implant hyperthermia. , 1993, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[110]  P L Ausmus,et al.  Effects of hyperthermia on blood flow and cis-diamminedichloroplatinum(II) pharmacokinetics in murine mammary adenocarcinomas. , 1992, Cancer research.

[111]  S. Mann,et al.  Magnetoferritin: in vitro synthesis of a novel magnetic protein. , 1992, Science.

[112]  A. Morrish Surface properties of small particles , 1992 .

[113]  M. Joniau,et al.  Mechanistic aspects of the adsorption of phospholipids onto lauric acid stabilized magnetite nanocolloids , 1991 .

[114]  J. Pirro,et al.  The response of human and rodent cells to hyperthermia. , 1991, International journal of radiation oncology, biology, physics.

[115]  V. N. Naumenko,et al.  Dispersity of magnetite in magnetic liquids and the interaction with a surfactant , 1990 .

[116]  D. Slamon Studies of the HER-2/neu proto-oncogene in human breast cancer. , 1990, Cancer investigation.

[117]  A. Klibanov Advances in Enzymes , 1989 .

[118]  M. Dewhirst,et al.  Biological and Clinical Aspects of Hyperthermia in Cancer Therapy , 1988, American journal of clinical oncology.

[119]  Katunori Suzuki,et al.  In: Advances in enzyme regulation , 1988 .

[120]  W. Dewey,et al.  Thermal dose determination in cancer therapy. , 1984, International journal of radiation oncology, biology, physics.

[121]  W. J. Brown,et al.  Thermomagnetic surgery for cancer. , 1982, The Journal of surgical research.

[122]  R. Molday,et al.  Immunospecific ferromagnetic iron-dextran reagents for the labeling and magnetic separation of cells. , 1982, Journal of immunological methods.

[123]  Robert F. Butler,et al.  Theoretical single‐domain grain size range in magnetite and titanomagnetite , 1975 .

[124]  D. Forester,et al.  Spin Pinning at Ferrite-Organic Interfaces , 1975 .

[125]  R. Gilchrist,et al.  Selective Inductive Heating of Lymph Nodes , 1957, Annals of surgery.