Tool condition monitoring using reflectance of chip surface and neural network

A wide variety of tool condition monitoring techniques has been introduced in recent years. Among them, tool force monitoring, tool vibration monitoring and tool acoustics emission monitoring are the three most common indirect tool condition monitoring techniques. Using multiple intelligent sensors, these techniques are able to monitor tool condition with varying degrees of success. This paper presents a novel approach for the estimation of tool wear using the reflectance of cutting chip surface and a back propagation neural network. It postulates that the condition of a tool can be determined using the surface finish and color of a cutting chip. A series of experiments has been carried out. The experimental data obtained was used to train the back propagation neural network. Subsequently, the trained neural network was used to perform tool wear prediction. Results show that the prediction is in good agreement with the flank wear measured experimentally.