Modeling the Day‐To‐Day Variability of Midnight Equatorial Plasma Bubbles With SAMI3/SD‐WACCM‐X

It is well‐known that equatorial plasma bubbles (EPBs) are highly correlated to the post‐sunset rise of the ionosphere on a climatological basis. However, when proceeding to the daily EPB development, what controls the day‐to‐day/longitudinal variability of EPBs remains a puzzle. In this study, we investigate the underlying physics responsible for the day‐to‐day/longitudinal variability of EPBs using the Sami3 is A Model of the Ionosphere (SAMI3) and the Specified Dynamics Whole Atmosphere Community Climate Model with thermosphere‐ionosphere eXtension (SD‐WACCM‐X). Simulation results on October 20, 22, and 24, 2020 were presented. SAMI3/SD‐WACCM‐X self‐consistently generated midnight EPBs on October 20 and 24, displaying irregular and regular spatial distributions, respectively. However, EPBs are absent on October 22. We investigate the role of gravity waves on upwelling growth and EPB development and discuss how gravity waves contribute to the distributions of EPBs. We found the westward wind associated with solar terminator waves and gravity waves induces polarization electric fields that map to the equatorial ionosphere from higher latitudes, resulting in midnight vertical drift enhancement and retrograde plasma flow. The upward vertical drift and retrograde flow further lead to shear flow instability and midnight plasma vortex, creating background conditions identical to the post‐sunset ionosphere. This provides conditions favorable for the upwelling growth and EPB development. The converging and diverging winds associated with solar terminator waves and midnight temperature maximum also affect the longitudinal distribution of EPBs. The absence of EPBs on October 22 is related to the weak westward wind associated with solar terminator waves.

[1]  T. Fuller‐Rowell,et al.  Modeling Equatorial F‐Region Ionospheric Instability Using a Regional Ionospheric Irregularity Model and WAM‐IPE , 2022, Journal of Geophysical Research: Space Physics.

[2]  P. K. Rajesh,et al.  Extreme Poleward Expanding Super Plasma Bubbles Over Asia‐Pacific Region Triggered by Tonga Volcano Eruption During the Recovery‐Phase of Geomagnetic Storm , 2022, Geophysical Research Letters.

[3]  A. Coster,et al.  Significant Ionospheric Hole and Equatorial Plasma Bubbles After the 2022 Tonga Volcano Eruption , 2022, Space Weather.

[4]  P. Alken,et al.  Impacts of the January 2022 Tonga Volcanic Eruption on the Ionospheric Dynamo: ICON‐MIGHTI and Swarm Observations of Extreme Neutral Winds and Currents , 2022, Geophysical Research Letters.

[5]  P. K. Rajesh,et al.  Rapid Conjugate Appearance of the Giant Ionospheric Lamb Wave Signatures in the Northern Hemisphere After Hunga‐Tonga Volcano Eruptions , 2022, Geophysical Research Letters.

[6]  R. Kahn,et al.  La Soufriere Volcanic Eruptions Launched Gravity Waves Into Space , 2022, Geophysical Research Letters.

[7]  P. K. Rajesh,et al.  Conjugate Effect of the 2011 Tohoku Reflected Tsunami‐Driven Gravity Waves in the Ionosphere , 2022, Geophysical Research Letters.

[8]  P. Inchin,et al.  Primary Versus Secondary Gravity Wave Responses at F‐Region Heights Generated by a Convective Source , 2021, Journal of Geophysical Research: Space Physics.

[9]  J. Anderson,et al.  Impact of Thermospheric Wind Data Assimilation on Ionospheric Electrodynamics Using a Coupled Whole Atmosphere Data Assimilation System , 2021, Journal of Geophysical Research: Space Physics.

[10]  W. Rideout,et al.  Electrified Postsunrise Ionospheric Perturbations at Millstone Hill , 2021 .

[11]  R. Tsunoda Observations of Equatorial Spread F , 2021 .

[12]  J. Huba,et al.  The Effect of Midnight Temperature Maximum Winds on Post‐Midnight Equatorial Spread F , 2021, Space Weather.

[13]  S. Vadas,et al.  Concentric Secondary Gravity Waves in the Thermosphere and Ionosphere Over the Continental United States on March 25–26, 2015 From Deep Convection , 2020, Journal of Geophysical Research: Space Physics.

[14]  Qian Wu,et al.  Observation and Simulation of the Development of Equatorial Plasma Bubbles: Post‐Sunset Rise or Upwelling Growth? , 2020, Journal of Geophysical Research: Space Physics.

[15]  J. Huba,et al.  Global Modeling of Equatorial Spread F with SAMI3/WACCM‐X , 2020, Geophysical Research Letters.

[16]  K. Groves,et al.  Radar Investigation of Postsunset Equatorial Ionospheric Instability Over Kwajalein During Project WINDY , 2020, Journal of Geophysical Research: Space Physics.

[17]  D. Drob,et al.  Modeling the Impact of Metallic Ion Layers on Equatorial Spread F With SAMI3/ESF , 2020, Geophysical Research Letters.

[18]  Qian Wu,et al.  Climatology of the Equatorial Plasma Bubbles Captured by FORMOSAT‐3/COSMIC , 2019, Journal of Geophysical Research: Space Physics.

[19]  S. Solomon,et al.  Global‐Scale Observations of the Equatorial Ionization Anomaly , 2019, Geophysical Research Letters.

[20]  P. K. Rajesh,et al.  Implication of Tidal Forcing Effects on the Zonal Variation of Solstice Equatorial Plasma Bubbles , 2019, Journal of Geophysical Research: Space Physics.

[21]  S. Saito,et al.  Post-sunset rise of equatorial F layer—or upwelling growth? , 2018, Progress in Earth and Planetary Science.

[22]  Yuichi Otsuka,et al.  Review of the generation mechanisms of post-midnight irregularities in the equatorial and low-latitude ionosphere , 2018, Progress in Earth and Planetary Science.

[23]  Astrid Maute,et al.  Development and Validation of the Whole Atmosphere Community Climate Model With Thermosphere and Ionosphere Extension (WACCM‐X 2.0) , 2018 .

[24]  Tatsuhiro Yokoyama,et al.  A review on the numerical simulation of equatorial plasma bubbles toward scintillation evaluation and forecasting , 2017, Progress in Earth and Planetary Science.

[25]  G. Crowley,et al.  SAMI3_ICON: Model of the Ionosphere/Plasmasphere System , 2017, Space science reviews.

[26]  A. Mannucci,et al.  Impact of non-migrating tides on the low latitude ionosphere during a sudden stratospheric warming event in January 2010 , 2017, Journal of Atmospheric and Solar-Terrestrial Physics.

[27]  Tomoko Matsuo,et al.  Equatorial plasma bubble generation/inhibition during 2015 St. Patrick's Day storm , 2017 .

[28]  Jann‐Yenq Liu,et al.  Concentric traveling ionosphere disturbances triggered by Super Typhoon Meranti (2016) , 2017 .

[29]  Iurii Cherniak,et al.  First observations of super plasma bubbles in Europe , 2016 .

[30]  Chao Xiong,et al.  The Swarm satellite loss of GPS signal and its relation to ionospheric plasma irregularities , 2016 .

[31]  T. Fuller‐Rowell,et al.  Impact of midnight thermosphere dynamics on the equatorial ionospheric vertical drifts , 2016 .

[32]  O. Godin,et al.  Oceans are a major source of waves in the thermosphere , 2016 .

[33]  O. Cheremnykh,et al.  Satellite observations of wave disturbances caused by moving solar terminator , 2016 .

[34]  Steven D. Miller,et al.  Multisensor profiling of a concentric gravity wave event propagating from the troposphere to the ionosphere , 2015 .

[35]  T. Yokoyama,et al.  West wall structuring of equatorial plasma bubbles simulated by three‐dimensional HIRB model , 2015 .

[36]  A. Mannucci,et al.  SAMI3/SD‐WACCM‐X simulations of ionospheric variability during northern winter 2009 , 2015 .

[37]  D. Drob,et al.  Modeling the ionospheric impact of tsunami‐driven gravity waves with SAMI3: Conjugate effects , 2015 .

[38]  Roland T. Tsunoda,et al.  Upwelling: a unit of disturbance in equatorial spread F , 2015, Progress in Earth and Planetary Science.

[39]  T. Fang,et al.  Electrodynamics of the equatorial evening ionosphere: 1. Importance of winds in different regions , 2015 .

[40]  L. Paxton,et al.  Morphology of the postsunset vortex in the equatorial ionospheric plasma drift , 2015 .

[41]  D. Fritts,et al.  Seeding equatorial spread F with turbulent gravity waves: Phasing effects , 2015 .

[42]  R. Tsunoda,et al.  Effects of tidal forcing, conductivity gradient, and active seeding on the climatology of equatorial spread F over Kwajalein , 2015 .

[43]  P. Lauritzen,et al.  Gravity waves simulated by high‐resolution Whole Atmosphere Community Climate Model , 2014 .

[44]  M. Hairston,et al.  The postsunset vertical plasma drift and its effects on the generation of equatorial plasma bubbles observed by the C/NOFS satellite , 2014 .

[45]  Larry J. Paxton,et al.  Progress toward forecasting of space weather effects on UHF SATCOM after Operation Anaconda , 2014 .

[46]  J. Retterer,et al.  Faith in a seed: on the origins of equatorial plasma bubbles , 2014 .

[47]  B. Damtie,et al.  Characteristics of large‐scale wave structure observed from African and Southeast Asian longitudinal sectors , 2014 .

[48]  R. Heelis,et al.  Topside equatorial zonal ion velocities measured by C/NOFS during rising solar activity , 2014 .

[49]  Patrick A. Roddy,et al.  Occurrence probability and amplitude of equatorial ionospheric irregularities associated with plasma bubbles during low and moderate solar activities (2008–2012) , 2013 .

[50]  E. Yizengaw,et al.  Postmidnight bubbles and scintillations in the quiet‐time June solstice , 2013 .

[51]  R. Garcia,et al.  The lower thermosphere during the northern hemisphere winter of 2009: A modeling study using high‐altitude data assimilation products in WACCM‐X , 2013 .

[52]  M. Hairston,et al.  Large‐scale quasiperiodic plasma bubbles: C/NOFS observations and causal mechanism , 2013 .

[53]  J. Huba,et al.  Impact of meridional winds on equatorial spread F: Revisited , 2013 .

[54]  J. Huba,et al.  Simulation of the seeding of equatorial spread F by circular gravity waves , 2013 .

[55]  Ken T. Murata,et al.  On post‐midnight field‐aligned irregularities observed with a 30.8‐MHz radar at a low latitude: Comparison withF‐layer altitude near the geomagnetic equator , 2012 .

[56]  R. Roble,et al.  Sources of low-latitude ionospheric E × B drifts and their variability , 2012 .

[57]  A. G. Burrell,et al.  Observations of quiet time vertical ion drift in the equatorial ionosphere during the solar minimum period of 2009 , 2011 .

[58]  T. Yokoyama,et al.  On postmidnight low‐latitude ionospheric irregularities during solar minimum: 2. C/NOFS observations and comparisons with the Equatorial Atmosphere Radar , 2011 .

[59]  J. Russell,et al.  Implications for atmospheric dynamics derived from global observations of gravity wave momentum flux in stratosphere and mesosphere , 2011 .

[60]  S. Schubert,et al.  MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications , 2011 .

[61]  John M. Retterer,et al.  Longitudinal and seasonal dependence of nighttime equatorial plasma density irregularities during solar minimum detected on the C/NOFS satellite , 2011 .

[62]  L. C. Gentile,et al.  Climatology of plasma density depletions observed by DMSP in the dawn sector , 2011 .

[63]  R. Heelis,et al.  Medium-scale equatorial plasma irregularities observed by Coupled Ion-Neutral Dynamics Investigation sensors aboard the Communication Navigation Outage Forecast System in a prolonged solar minimum , 2010 .

[64]  J. D. Huba,et al.  Global modeling of equatorial plasma bubbles , 2010 .

[65]  G. Crowley,et al.  Periodic spacing between consecutive equatorial plasma bubbles , 2010 .

[66]  R. Tsunoda On seeding equatorial spread F: Circular gravity waves , 2010 .

[67]  R. D. Jesus,et al.  Strong postmidnight equatorial ionospheric anomaly observations during magnetically quiet periods , 2009 .

[68]  J. Huba,et al.  Three‐dimensional equatorial spread F modeling: Zonal neutral wind effects , 2009 .

[69]  W. J. Burke,et al.  C/NOFS observations of plasma density and electric field irregularities at post‐midnight local times , 2009 .

[70]  W. J. Burke,et al.  Assimilative modeling of equatorial plasma depletions observed by C/NOFS , 2009 .

[71]  J. Chau,et al.  Comparing F region ionospheric irregularity observations from C/NOFS and Jicamarca , 2009 .

[72]  W. J. Burke,et al.  C/NOFS observations of deep plasma depletions at dawn , 2009 .

[73]  J. Makela,et al.  Seeding of equatorial plasma depletions by polarization electric fields from middle latitudes: Experimental evidence , 2009 .

[74]  Hitoshi Fujiwara,et al.  Solar terminator wave and its relation to the atmospheric tide , 2009 .

[75]  E. R. de Paula,et al.  Gravity wave initiation of equatorial spread F/plasma bubble irregularities based on observational data from the SpreadFEx campaign , 2009 .

[76]  S. Zalesak,et al.  Three-dimensional simulation of equatorial spread-F with meridional wind effects , 2009 .

[77]  R. Heelis,et al.  Formation of a plasma depletion shell in the equatorial ionosphere , 2009 .

[78]  Hermann Lühr,et al.  A solar terminator wave in thermospheric wind and density simultaneously observed by CHAMP , 2009 .

[79]  Steven C. Reising,et al.  Concentric gravity waves in the mesosphere generated by deep convective plumes in the lower atmosphere near Fort Collins, Colorado , 2009 .

[80]  S. Bruinsma,et al.  A solar terminator wave in thermosphere neutral densities measured by the CHAMP satellite , 2008 .

[81]  J. Huba,et al.  Three‐dimensional equatorial spread F modeling , 2008 .

[82]  Takuya Tsugawa,et al.  Occurrence characteristics of plasma bubble derived from global ground‐based GPS receiver networks , 2007 .

[83]  T. Fang,et al.  Motions of the equatorial ionization anomaly crests imaged by FORMOSAT‐3/COSMIC , 2007 .

[84]  Paul M. Kintner,et al.  GPS and ionospheric scintillations , 2007 .

[85]  S. Saito,et al.  Large‐scale longitudinal variation in ionospheric height and equatorial spread F occurrences observed by ionosondes , 2007 .

[86]  R. Tsunoda Seeding of equatorial plasma bubbles with electric fields from an Es-layer instability , 2007 .

[87]  M. Kelley,et al.  Observations of electric fields associated with internal gravity waves , 2007 .

[88]  W. J. Burke,et al.  A climatology of equatorial plasma bubbles from DMSP 1989–2004 , 2006 .

[89]  Hermann Lühr,et al.  A gravity‐driven electric current in the Earth's ionosphere identified in CHAMP satellite magnetic measurements , 2006 .

[90]  C. Swenson,et al.  Onset conditions for equatorial spread F determined during EQUIS II , 2005 .

[91]  R. Daniell,et al.  Assimilative modeling of the equatorial ionosphere for scintillation forecasting: Modeling with vertical drifts , 2005 .

[92]  J. Chau,et al.  Possible ionospheric preconditioning by shear flow leading to equatorial spread F , 2005 .

[93]  J. Chau,et al.  Bottom-type scattering layers and equatorial spread F , 2004 .

[94]  L. C. Gentile,et al.  Longitudinal variability of equatorial plasma bubbles observed by DMSP and ROCSAT‐1 , 2004 .

[95]  David L. Hysell,et al.  Collisional shear instability in the equatorial F region ionosphere , 2004 .

[96]  R. Heelis,et al.  Electrodynamics in the low and middle latitude ionosphere: a tutorial , 2004 .

[97]  J. Eccles The effect of gravity and pressure in the electrodynamics of the low‐latitude ionosphere , 2004 .

[98]  F. Kamalabadi,et al.  The first coordinated ground‐ and space‐based optical observations of equatorial plasma bubbles , 2003 .

[99]  Tadahiko Ogawa,et al.  Geomagnetic conjugate observations of equatorial airglow depletions , 2002 .

[100]  Glenn Joyce,et al.  SAMI2(Sami2 is Another Model of the Ionosphere) , 2001 .

[101]  Erhan Kudeki,et al.  Postsunset vortex in equatorial F‐region plasma drifts and implications for bottomside spread‐F , 1999 .

[102]  Ludger Scherliess,et al.  Radar and satellite global equatorial F-region vertical drift model , 1999 .

[103]  F. S. Johnson,et al.  Occurrence of equatorial F region irregularities: Evidence for tropospheric seeding , 1998 .

[104]  F. S. Johnson,et al.  Gravity wave seeding of equatorial plasma bubbles , 1997 .

[105]  P. J. Sultan,et al.  Linear theory and modeling of the Rayleigh‐Taylor instability leading to the occurrence of equatorial spread F , 1996 .

[106]  A. Richmond Ionospheric Electrodynamics Using Magnetic Apex Coordinates. , 1995 .

[107]  Takashi Maruyama,et al.  Longitudinal variability of annual changes in activity of equatorial spread F and plasma bubbles , 1984 .

[108]  M. Larsen,et al.  Gravity wave initiation of equatorial spread F: A case study , 1981 .

[109]  C. Rino,et al.  Evidence of a velocity shear in bulk plasma motion associated with the post‐sunset rise of the equatorial F‐layer , 1981 .

[110]  M. Kelley,et al.  Simultaneous measurements of ionospheric and magnetospheric electric fields in the outer plasmasphere , 1980 .

[111]  Ronald F. Woodman,et al.  Radar observations of F region equatorial irregularities , 1976 .

[112]  H. Booker,et al.  Scattering of radio waves by the F-region of the ionosphere , 1938 .

[113]  J. Huba,et al.  Modeling the disappearance of equatorial plasma bubble by nighttime medium-scale traveling ionospheric disturbances , 2021, Terrestrial, Atmospheric and Oceanic Sciences.

[114]  R. Tsunoda,et al.  Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region Pedersen conductivity , 1985 .

[115]  Kung Chie Yeh,et al.  Radio wave scintillations in the ionosphere , 1982, Proceedings of the IEEE.

[116]  Eh. S. Kazimirovskij,et al.  The earth's ionosphere. , 1981 .

[117]  F. Perkins,et al.  Spread F and ionospheric currents , 1973 .