Measurements of high-energy radiation generation from laser-wakefield accelerated electron beams

Using high-energy (∼0.5 GeV) electron beams generated by laser wakefield acceleration (LWFA), bremsstrahlung radiation was created by interacting these beams with various solid targets. Secondary processes generate high-energy electrons, positrons, and neutrons, which can be measured shot-to-shot using magnetic spectrometers, short half-life activation, and Compton scattering. Presented here are proof-of-principle results from a high-resolution, high-energy gamma-ray spectrometer capable of single-shot operation, and high repetition rate activation diagnostics. We describe the techniques used in these measurements and their potential applications in diagnosing LWFA electron beams and measuring high-energy radiation from laser-plasma interactions.

[1]  A Pak,et al.  Self-guided laser wakefield acceleration beyond 1 GeV using ionization-induced injection. , 2010, Physical review letters.

[2]  T. Tajima,et al.  Laser Electron Accelerator , 1979 .

[3]  Photonuclear fission with quasimonoenergetic electron beams from laser wakefields , 2006 .

[4]  Erik Lefebvre,et al.  Few femtosecond, few kiloampere electron bunch produced by a laser-plasma accelerator , 2011 .

[5]  Hans A. Bethe,et al.  On the Stopping of Fast Particles and on the Creation of Positive Electrons , 1934 .

[6]  M. Tarisien,et al.  Effect of plasma density scale length on the properties of bremsstrahlung x-ray sources created by picosecond laser pulses , 2009 .

[7]  G. Mourou,et al.  Ultra-high intensity- 300-TW laser at 0.1 Hz repetition rate. , 2008, Optics express.

[8]  C. Keitel,et al.  Laser-driven generation of collimated ultra-relativistic positron beams , 2013 .

[9]  A Pak,et al.  Injection and trapping of tunnel-ionized electrons into laser-produced wakes. , 2009, Physical review letters.

[10]  Zulfikar Najmudin,et al.  Bright spatially coherent synchrotron X-rays from a table-top source , 2010 .

[11]  Y. Glinec,et al.  A laser–plasma accelerator producing monoenergetic electron beams , 2004, Nature.

[12]  S. Chen,et al.  MeV-energy x rays from inverse compton scattering with laser-wakefield accelerated electrons. , 2013, Physical review letters.

[13]  P. P. Rajeev,et al.  Gamma-rays from harmonically resonant betatron oscillations in a plasma wake , 2011 .

[14]  K. Nakamura,et al.  GeV electron beams from a centimetre-scale accelerator , 2006 .

[15]  F. Cerutti,et al.  The FLUKA code: Description and benchmarking , 2007 .

[16]  I. V. Glazyrin,et al.  Ionization induced trapping in a laser wakefield accelerator. , 2009, Physical review letters.

[17]  K. Z. Hatsagortsyan,et al.  Extremely high-intensity laser interactions with fundamental quantum systems , 2011, 1111.3886.

[18]  C. Keitel,et al.  Table-top laser-based source of femtosecond, collimated, ultrarelativistic positron beams. , 2013, Physical review letters.

[19]  A. E. Dangor,et al.  Monoenergetic beams of relativistic electrons from intense laser–plasma interactions , 2004, Nature.

[20]  A Pak,et al.  Demonstration of a narrow energy spread, ∼0.5  GeV electron beam from a two-stage laser wakefield accelerator. , 2011, Physical review letters.

[21]  Y. Glinec,et al.  Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses , 2006, Nature.

[22]  Richard Kowalczyk,et al.  Nonlinear Thomson scattering: A tutorial , 2003 .

[23]  Eric Esarey,et al.  Gamma-neutron activation experiments using laser wakefield accelerators , 2001 .

[24]  C. Wahlström,et al.  Laser-wakefield acceleration of monoenergetic electron beams in the first plasma-wave period. , 2006, Physical review letters.

[25]  F. Hartemann,et al.  Low-intensity nonlinear spectral effects in compton scattering. , 2010, Physical Review Letters.

[26]  Rajiv C. Shah,et al.  All-optical Compton gamma-ray source , 2012, Nature Photonics.

[27]  J. Cary,et al.  High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding , 2004, Nature.

[28]  T. Ditmire,et al.  Quasi-monoenergetic laser-plasma acceleration of electrons to 2 GeV , 2013, Nature Communications.

[29]  Clark,et al.  Photonuclear physics when a multiterawatt laser pulse interacts with solid targets , 2000, Physical review letters.

[30]  S R Nagel,et al.  Near-GeV acceleration of electrons by a nonlinear plasma wave driven by a self-guided laser pulse. , 2009, Physical review letters.

[31]  G. Lambert,et al.  Femtosecond x rays from laser-plasma accelerators , 2013, 1301.5066.

[32]  Teruyoshi Takahashi,et al.  Calibration of imaging plate for high energy electron spectrometer , 2005 .