Coupled continuum and discrete analysis of random heterogeneous materials: Elasticity and fracture

[1]  Markus J Buehler,et al.  Natural stiffening increases flaw tolerance of biological fibers. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  M. Buehler,et al.  Influence of geometry on mechanical properties of bio-inspired silica-based hierarchical materials , 2012, Bioinspiration & biomimetics.

[3]  Huajian Gao,et al.  Flaw insensitive fracture in nanocrystalline graphene. , 2012, Nano letters.

[4]  Y. Kauffmann,et al.  Inhomogeneity of Nacre Lamellae on the Nanometer Length Scale , 2012 .

[5]  Markus J Buehler,et al.  Nanoconfinement of spider silk fibrils begets superior strength, extensibility, and toughness. , 2011, Nano letters.

[6]  Huajian Gao,et al.  Is stress concentration relevant for nanocrystalline metals? , 2011, Nano letters.

[7]  Vincenzo Ilario Carbone,et al.  Numerical discretization of stationary random processes , 2010 .

[8]  Zhiping Xu,et al.  Nanoconfinement Controls Stiffness, Strength and Mechanical Toughness of Β-sheet Crystals in Silk , 2010 .

[9]  Zhiping Xu,et al.  Materials science: Mind the helical crack , 2010, Nature.

[10]  Francois Barthelat,et al.  Merger of structure and material in nacre and bone - Perspectives on de novo biomimetic materials , 2009 .

[11]  Huajian Gao,et al.  Notch insensitive fracture in nanoscale thin films , 2009 .

[12]  Markus J. Buehler,et al.  Atomistic Modeling of Materials Failure , 2008 .

[13]  P. Fratzl,et al.  Hindered Crack Propagation in Materials with Periodically Varying Young's Modulus—Lessons from Biological Materials , 2007 .

[14]  A. Palazoglu,et al.  Nanoscale heterogeneity promotes energy dissipation in bone. , 2007, Nature materials.

[15]  Horacio Dante Espinosa,et al.  An Experimental Investigation of Deformation and Fracture of Nacre–Mother of Pearl , 2007 .

[16]  F. Barthelat,et al.  On the mechanics of mother-of-pearl: a key feature in the material hierarchical structure , 2007 .

[17]  Liang Hong,et al.  Clusters of charged Janus spheres. , 2006, Nano letters.

[18]  Himadri S. Gupta,et al.  Mechanical modulation at the lamellar level in osteonal bone , 2006 .

[19]  Thomas Seelig,et al.  Fracture Mechanics: With an Introduction to Micromechanics , 2006 .

[20]  J. Aizenberg,et al.  Skeleton of Euplectella sp.: Structural Hierarchy from the Nanoscale to the Macroscale , 2005, Science.

[21]  William A. Curtin,et al.  Multiscale plasticity modeling: coupled atomistics and discrete dislocation mechanics , 2004 .

[22]  Huajian Gao,et al.  Materials become insensitive to flaws at nanoscale: Lessons from nature , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[23]  D. Xiu,et al.  Stochastic Modeling of Flow-Structure Interactions Using Generalized Polynomial Chaos , 2002 .

[24]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[25]  R. Ghanem,et al.  A stochastic projection method for fluid flow. I: basic formulation , 2001 .

[26]  J. Bolander,et al.  Fracture analyses using spring networks with random geometry , 1998 .

[27]  T. Harter,et al.  Flow in unsaturated random porous media, nonlinear numerical analysis and comparison to analytical stochastic models , 1998 .

[28]  Huajian Gao,et al.  Numerical simulation of crack growth in an isotropic solid with randomized internal cohesive bonds , 1998 .

[29]  Ronald E. Miller,et al.  An adaptive finite element approach to atomic-scale mechanics—the quasicontinuum method , 1997, cond-mat/9710027.

[30]  W. Curtin Toughening in disordered brittle materials , 1997 .

[31]  Steve Plimpton,et al.  Fast parallel algorithms for short-range molecular dynamics , 1993 .

[32]  William A. Curtin,et al.  Brittle fracture in disordered materials: A spring network model , 1990 .

[33]  R. Ghanem,et al.  Polynomial Chaos in Stochastic Finite Elements , 1990 .

[34]  R. Ghanem,et al.  Stochastic Finite Element Expansion for Random Media , 1989 .

[35]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[36]  J. Ericksen The Cauchy and Born Hypotheses for Crystals. , 1983 .

[37]  Michel Loève,et al.  Probability Theory I , 1977 .

[38]  J. Whitney,et al.  Stress Fracture Criteria for Laminated Composites Containing Stress Concentrations , 1974 .

[39]  J. Eisenmann,et al.  Macroscopic Fracture Mechanics of Advanced Composite Materials , 1971 .

[40]  I. Cameron An analysis of the errors caused by using artificial viscosity terms to represent steady-state shock waves , 1966 .

[41]  P. de Gennes,et al.  Why is nacre strong? Elastic theory and fracture mechanics for biocomposites with stratified structures , 2001 .

[42]  H. Matthies,et al.  Uncertainties in probabilistic numerical analysis of structures and solids-Stochastic finite elements , 1997 .

[43]  Arbabi,et al.  Mechanics of disordered solids. III. Fracture properties. , 1993, Physical review. B, Condensed matter.

[44]  M. Loève Probability theory : foundations, random sequences , 1955 .

[45]  K. Karhunen Zur Spektraltheorie stochastischer prozesse , 1946 .

[46]  A. A. Griffith The Phenomena of Rupture and Flow in Solids , 1921 .