Sparse Methods in Spectroscopy: An Introduction, Overview, and Perspective

Multivariate calibration methods such as partial least-squares build calibration models that are not parsimonious: all variables (either wavelengths or samples) are used to define a calibration model. In high-dimensional or large sample size settings, interpretable analysis aims to reduce model complexity by finding a small subset of variables that significantly influences the model. The term “sparsity”, as used here, refers to calibration models having many zero-valued regression coefficients. Only the variables associated with non-zero coefficients influence the model. In this paper, we briefly review the regression problems associated with sparse models and discuss their spectroscopic applications. We also discuss how one can re-appropriate sparse modeling algorithms that perform wavelength selection for purposes of sample selection. In particular, we highlight specific sparse modeling algorithms that are easy to use and understand for the spectroscopist, as opposed to the overly complex “black-box” algorithms that dominate much of the statistical learning literature. We apply these sparse modeling approaches to three spectroscopic data sets.

[1]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[2]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[3]  Jianhua Z. Huang,et al.  Sparse principal component analysis via regularized low rank matrix approximation , 2008 .

[4]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[5]  C. Jun,et al.  Performance of some variable selection methods when multicollinearity is present , 2005 .

[6]  Per-Gunnar Martinsson,et al.  Randomized algorithms for the low-rank approximation of matrices , 2007, Proceedings of the National Academy of Sciences.

[7]  A Tikhonov,et al.  Solution of Incorrectly Formulated Problems and the Regularization Method , 1963 .

[8]  P J de Groot,et al.  Effect on the Partial Least-Squares Prediction of Yarn Properties Combining Raman and Infrared Measurements and Applying Wavelength Selection , 2003, Applied spectroscopy.

[9]  Philippe Besse,et al.  Statistical Applications in Genetics and Molecular Biology A Sparse PLS for Variable Selection when Integrating Omics Data , 2011 .

[10]  R. Leardi Genetic algorithms in chemometrics and chemistry: a review , 2001 .

[11]  Riccardo Leardi,et al.  Genetic Algorithms as a Tool for Wavelength Selection in Multivariate Calibration , 1995 .

[12]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[13]  S. Levy,et al.  Reconstruction of a sparse spike train from a portion of its spectrum and application to high-resolution deconvolution , 1981 .

[14]  David M. Haaland,et al.  New augmented classical least squares methods for improved quantitative spectral analyses , 2002 .

[15]  Durmus Ozdemir,et al.  Multi-Instrument Calibration with Genetic Regression in UV-Visible Spectroscopy , 1999 .

[16]  E. Andries Sparse models by iteratively reweighted feature scaling: a framework for wavelength and sample selection , 2013 .

[17]  Mark Tygert,et al.  A Randomized Algorithm for Principal Component Analysis , 2008, SIAM J. Matrix Anal. Appl..

[18]  David M. Haaland,et al.  New Classical Least-Squares/Partial Least-Squares Hybrid Algorithm for Spectral Analyses , 2001 .

[19]  H. Akaike A new look at the statistical model identification , 1974 .

[20]  Erik Andries,et al.  Spectral Multivariate Calibration with Wavelength Selection Using Variants of Tikhonov Regularization , 2010, Applied spectroscopy.

[21]  R. Manne Analysis of two partial-least-squares algorithms for multivariate calibration , 1987 .

[22]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[23]  Erik Andries,et al.  Model updating for spectral calibration maintenance and transfer using 1-norm variants of Tikhonov regularization. , 2010, Analytical chemistry.

[24]  Bhaskar D. Rao,et al.  Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm , 1997, IEEE Trans. Signal Process..

[25]  J. Claerbout,et al.  Robust Modeling With Erratic Data , 1973 .

[26]  Yurii Nesterov,et al.  Generalized Power Method for Sparse Principal Component Analysis , 2008, J. Mach. Learn. Res..

[27]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[28]  S. Keleş,et al.  Sparse partial least squares regression for simultaneous dimension reduction and variable selection , 2010, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[29]  Shuiwang Ji,et al.  SLEP: Sparse Learning with Efficient Projections , 2011 .

[30]  David M. Haaland,et al.  New Prediction-Augmented Classical Least-Squares (PACLS) Methods: Application to Unmodeled Interferents , 2000 .

[31]  E. V. Thomas,et al.  Partial least-squares methods for spectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information , 1988 .

[32]  P. Hansen Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .

[33]  Ming Gu,et al.  Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..

[34]  Bhaskar D. Rao,et al.  An affine scaling methodology for best basis selection , 1999, IEEE Trans. Signal Process..

[35]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[36]  F. Santosa,et al.  Linear inversion of ban limit reflection seismograms , 1986 .

[37]  Tarja Rajalahti,et al.  Discriminating variable test and selectivity ratio plot: quantitative tools for interpretation and variable (biomarker) selection in complex spectral or chromatographic profiles. , 2009, Analytical chemistry.

[38]  David M. Haaland,et al.  New Hybrid Algorithm for Maintaining Multivariate Quantitative Calibrations of a Near-Infrared Spectrometer , 2002 .

[39]  M. R. Osborne,et al.  On the LASSO and its Dual , 2000 .

[40]  E.J. Candes,et al.  An Introduction To Compressive Sampling , 2008, IEEE Signal Processing Magazine.

[41]  Hongdong Li,et al.  Key wavelengths screening using competitive adaptive reweighted sampling method for multivariate calibration. , 2009, Analytica chimica acta.

[42]  Joe Whittaker,et al.  Adaptively preconditioned Krylov spaces to identify irrelevant predictors , 2010 .

[43]  Nathan Halko,et al.  An Algorithm for the Principal Component Analysis of Large Data Sets , 2010, SIAM J. Sci. Comput..

[44]  Petros Drineas,et al.  CUR matrix decompositions for improved data analysis , 2009, Proceedings of the National Academy of Sciences.

[45]  L. Buydens,et al.  Development of robust calibration models in near infra-red spectrometric applications , 2000 .

[46]  J. Franklin,et al.  MINIMUM PRINCIPLES FOR ILL-POSED PROBLEMS* , 1978 .

[47]  S. Engelsen,et al.  Interval Partial Least-Squares Regression (iPLS): A Comparative Chemometric Study with an Example from Near-Infrared Spectroscopy , 2000 .

[48]  Albert Tarantola,et al.  Inverse problem theory - and methods for model parameter estimation , 2004 .

[49]  Maria Fernanda Pimentel,et al.  Robust modeling for multivariate calibration transfer by the successive projections algorithm , 2005 .

[50]  D. Cox,et al.  Evaluating Clinical Accuracy of Systems for Self-Monitoring of Blood Glucose , 1987, Diabetes Care.

[51]  Erik Andries,et al.  Impact of standardization sample design on Tikhonov regularization variants for spectroscopic calibration maintenance and transfer , 2010 .

[52]  Stephen P. Boyd,et al.  Enhancing Sparsity by Reweighted ℓ1 Minimization , 2007, 0711.1612.

[53]  Erik Andries,et al.  Calibration Maintenance and Transfer Using Tikhonov Regularization Approaches , 2009, Applied spectroscopy.

[54]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[55]  Wenjiang J. Fu Penalized Regressions: The Bridge versus the Lasso , 1998 .

[56]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[57]  H. L. Taylor,et al.  Deconvolution with the l 1 norm , 1979 .

[58]  Ian T. Jolliffe,et al.  Projected gradient approach to the numerical solution of the SCoTLASS , 2006, Comput. Stat. Data Anal..

[59]  R. Tibshirani,et al.  Regression shrinkage and selection via the lasso: a retrospective , 2011 .

[60]  David M. Haaland,et al.  Concentration Residual Augmented Classical Least Squares (CRACLS): A Multivariate Calibration Method with Advantages over Partial Least Squares , 2002 .

[61]  Michael I. Jordan,et al.  A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, NIPS 2004.

[62]  D. Abookasis,et al.  Application of spectra cross-correlation for Type II outliers screening during multivariate near-infrared spectroscopic analysis of whole blood , 2011 .

[63]  Arthur E. Hoerl,et al.  Application of ridge analysis to regression problems , 1962 .

[64]  Per Christian Hansen,et al.  Low-rank revealing QR factorizations , 1994, Numer. Linear Algebra Appl..

[65]  Trevor J. Hastie,et al.  Sparse Discriminant Analysis , 2011, Technometrics.

[66]  Nathan Halko,et al.  Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..

[67]  Johan A. K. Suykens,et al.  Least Squares Support Vector Machines , 2002 .

[68]  John H. Kalivas,et al.  Overview of two‐norm (L2) and one‐norm (L1) Tikhonov regularization variants for full wavelength or sparse spectral multivariate calibration models or maintenance , 2012 .

[69]  M. Mørup,et al.  Multiplicative Updates for the Lasso , 2007, 2007 IEEE Workshop on Machine Learning for Signal Processing.

[70]  Qingsong Xu,et al.  Elastic Net Grouping Variable Selection Combined with Partial Least Squares Regression (EN-PLSR) for the Analysis of Strongly Multi-Collinear Spectroscopic Data , 2011, Applied spectroscopy.

[71]  R. Tibshirani,et al.  PATHWISE COORDINATE OPTIMIZATION , 2007, 0708.1485.

[72]  Mark W. Schmidt,et al.  Fast Optimization Methods for L1 Regularization: A Comparative Study and Two New Approaches , 2007, ECML.