Deep Anomaly Detection Using Geometric Transformations

We consider the problem of anomaly detection in images, and present a new detection technique. Given a sample of images, all known to belong to a "normal" class (e.g., dogs), we show how to train a deep neural model that can detect out-of-distribution images (i.e., non-dog objects). The main idea behind our scheme is to train a multi-class model to discriminate between dozens of geometric transformations applied on all the given images. The auxiliary expertise learned by the model generates feature detectors that effectively identify, at test time, anomalous images based on the softmax activation statistics of the model when applied on transformed images. We present extensive experiments using the proposed detector, which indicate that our algorithm improves state-of-the-art methods by a wide margin.

[1]  Georg Langs,et al.  Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery , 2017, IPMI.

[2]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[3]  Hod Lipson,et al.  Understanding Neural Networks Through Deep Visualization , 2015, ArXiv.

[4]  Hans-Peter Kriegel,et al.  A survey on unsupervised outlier detection in high‐dimensional numerical data , 2012, Stat. Anal. Data Min..

[5]  Yu Cheng,et al.  Deep Structured Energy Based Models for Anomaly Detection , 2016, ICML.

[6]  R. Srikant,et al.  Enhancing The Reliability of Out-of-distribution Image Detection in Neural Networks , 2017, ICLR.

[7]  Nikos Komodakis,et al.  Wide Residual Networks , 2016, BMVC.

[8]  Jon Howell,et al.  Asirra: a CAPTCHA that exploits interest-aligned manual image categorization , 2007, CCS '07.

[9]  Sungzoon Cho,et al.  Variational Autoencoder based Anomaly Detection using Reconstruction Probability , 2015 .

[10]  Ran El-Yaniv,et al.  Agnostic Selective Classification , 2011, NIPS.

[11]  Ran El-Yaniv,et al.  Optimal Single-Class Classification Strategies , 2006, NIPS.

[12]  Ran El-Yaniv,et al.  Pointwise Tracking the Optimal Regression Function , 2012, NIPS.

[13]  Qiang Liu,et al.  Hyperparameter selection of one-class support vector machine by self-adaptive data shifting , 2018, Pattern Recognit..

[14]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[15]  Marius Kloft,et al.  Image Anomaly Detection with Generative Adversarial Networks , 2018, ECML/PKDD.

[16]  Olivier Poch,et al.  A maximum likelihood approximation method for Dirichlet's parameter estimation , 2008, Comput. Stat. Data Anal..

[17]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[18]  Ran El-Yaniv,et al.  Deep Active Learning with a Neural Architecture Search , 2018, NeurIPS.

[19]  Mark Goadrich,et al.  The relationship between Precision-Recall and ROC curves , 2006, ICML.

[20]  Gilles Blanchard,et al.  Semi-Supervised Novelty Detection , 2010, J. Mach. Learn. Res..

[21]  Kevin Gimpel,et al.  A Baseline for Detecting Misclassified and Out-of-Distribution Examples in Neural Networks , 2016, ICLR.

[22]  Bo Zong,et al.  Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection , 2018, ICLR.

[23]  Chandan Srivastava,et al.  Support Vector Data Description , 2011 .

[24]  Ran El-Yaniv,et al.  Deep Active Learning over the Long Tail , 2017, ArXiv.

[25]  Nathalie Japkowicz,et al.  Anomaly Detection in Automobile Control Network Data with Long Short-Term Memory Networks , 2016, 2016 IEEE International Conference on Data Science and Advanced Analytics (DSAA).

[26]  T. Lumley,et al.  PRINCIPAL COMPONENT ANALYSIS AND FACTOR ANALYSIS , 2004, Statistical Methods for Biomedical Research.

[27]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[28]  Pascal Vincent,et al.  A Connection Between Score Matching and Denoising Autoencoders , 2011, Neural Computation.

[29]  Ran El-Yaniv,et al.  Selective Classification for Deep Neural Networks , 2017, NIPS.

[30]  Alexander Binder,et al.  Deep One-Class Classification , 2018, ICML.

[31]  T. Minka Estimating a Dirichlet distribution , 2012 .

[32]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[33]  VARUN CHANDOLA,et al.  Anomaly detection: A survey , 2009, CSUR.

[34]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[35]  Gang Hua,et al.  Learning Discriminative Reconstructions for Unsupervised Outlier Removal , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[36]  Ran El-Yaniv,et al.  Transductive Rademacher Complexity and Its Applications , 2007, COLT.

[37]  Roland Vollgraf,et al.  Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms , 2017, ArXiv.

[38]  Bernhard Schölkopf,et al.  Support Vector Method for Novelty Detection , 1999, NIPS.

[39]  Evgeny Burnaev,et al.  Model selection for anomaly detection , 2015, International Conference on Machine Vision.

[40]  Tomoharu Iwata,et al.  Multi-view Anomaly Detection via Robust Probabilistic Latent Variable Models , 2016, NIPS.

[41]  Ran El-Yaniv,et al.  On the Foundations of Adversarial Single-Class Classification , 2010, ArXiv.

[42]  Ran El-Yaniv,et al.  Boosting Uncertainty Estimation for Deep Neural Classifiers , 2018, ArXiv.

[43]  Clayton D. Scott,et al.  Robust kernel density estimation , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.