Ghost symmetry of the discrete KP hierarchy
暂无分享,去创建一个
Jingsong He | Maohua Li | Jipeng Cheng | Chuanzhong Li | Kelei Tian | Jingsong He | Chuanzhong Li | Maohua Li | Jipeng Cheng | Kelei Tian
[1] Hermano Frid Neto,et al. Lax pairs , 1984 .
[2] B. Kupershmidt,et al. Discrete lax equations and differential-difference calculus , 1985 .
[3] L. Dickey. Soliton Equations and Hamiltonian Systems , 2003 .
[4] Mikio Sato. Soliton Equations as Dynamical Systems on Infinite Dimensional Grassmann Manifold , 1983 .
[5] I. Loris,et al. The fermionic approach to Darboux transformations , 1998 .
[6] Jingsong He,et al. The “ghost” symmetry of the BKP hierarchy , 2010, 1003.5987.
[7] A new extended discrete KP hierarchy and a generalized dressing method , 2009, 0907.2783.
[8] Method of Squared Eigenfunction Potentials in Integrable Hierarchies of KP Type , 1997, solv-int/9701017.
[9] Virasoro symmetry of constrained KP hierarchies , 1996, hep-th/9602068.
[10] Masaki Kashiwara,et al. Transformation groups for soliton equations: IV. A new hierarchy of soliton equations of KP-type , 1982 .
[11] M. Jimbo,et al. TRANSFORMATION GROUPS FOR SOLITON EQUATIONS , 1982 .
[12] S. Carillo,et al. Regular ArticleSquared Eigenfunction Symmetries for Soliton Equations: Part II☆ , 1998 .
[13] P. Moerbeke,et al. Vertex Operator Solutions to the Discrete KP-Hierarchy , 1999, solv-int/9912014.
[14] Ralph Willox,et al. Darboux and binary Darboux transformations for the nonautonomous discrete KP equation , 1997 .
[15] Dengyuan Chen,et al. SYMMETRIES AND LIE ALGEBRA OF THE DIFFERENTIAL–DIFFERENCE KADOMSTEV–PETVIASHVILI HIERARCHY , 2009, 0908.0382.
[16] S. Carillo,et al. Squared Eigenfunction Symmetries for Soliton Equations: Part I , 1998 .
[17] L. Dickey. Modified KP and Discrete KP , 1999 .
[18] SQUARED EIGENFUNCTIONS OF THE (MODIFIED) KP HIERARCHY AND SCATTERING PROBLEMS OF LOEWNER TYPE , 1994 .
[19] K. M. Tamizhmani,et al. Lax pairs, symmetries and conservation laws of a differential-difference equation—Sato's approach , 1997 .
[20] W. Oevel. Darboux theorems and Wronskian formulas for integrable systems: I. Constrained KP flows , 1993 .
[21] P. Iliev,et al. Commutative rings of difference operators and an adelic flag manifold , 2000 .
[22] Li Shaowei,et al. Sato's Bäcklund transformations, additional symmetries and ASvM formula for the discrete KP hierarchy , 2010 .