Ghost symmetry of the discrete KP hierarchy

In this paper, with the help of the S function and ghost symmetry for the discrete KP hierarchy which is a semi-discrete version of the KP hierarchy, the ghost flow on its eigenfunction (adjoint eigenfunction) and the spectral representation of its Baker–Akhiezer function and adjoint Baker–Akhiezer function are derived. From these observations above, some important distinctions between the discrete KP hierarchy and KP hierarchy are shown. Also we give the ghost flow on the tau function and another kind of proof of the ASvM formula of the discrete KP hierarchy.

[1]  Hermano Frid Neto,et al.  Lax pairs , 1984 .

[2]  B. Kupershmidt,et al.  Discrete lax equations and differential-difference calculus , 1985 .

[3]  L. Dickey Soliton Equations and Hamiltonian Systems , 2003 .

[4]  Mikio Sato Soliton Equations as Dynamical Systems on Infinite Dimensional Grassmann Manifold , 1983 .

[5]  I. Loris,et al.  The fermionic approach to Darboux transformations , 1998 .

[6]  Jingsong He,et al.  The “ghost” symmetry of the BKP hierarchy , 2010, 1003.5987.

[7]  A new extended discrete KP hierarchy and a generalized dressing method , 2009, 0907.2783.

[8]  Method of Squared Eigenfunction Potentials in Integrable Hierarchies of KP Type , 1997, solv-int/9701017.

[9]  Virasoro symmetry of constrained KP hierarchies , 1996, hep-th/9602068.

[10]  Masaki Kashiwara,et al.  Transformation groups for soliton equations: IV. A new hierarchy of soliton equations of KP-type , 1982 .

[11]  M. Jimbo,et al.  TRANSFORMATION GROUPS FOR SOLITON EQUATIONS , 1982 .

[12]  S. Carillo,et al.  Regular ArticleSquared Eigenfunction Symmetries for Soliton Equations: Part II☆ , 1998 .

[13]  P. Moerbeke,et al.  Vertex Operator Solutions to the Discrete KP-Hierarchy , 1999, solv-int/9912014.

[14]  Ralph Willox,et al.  Darboux and binary Darboux transformations for the nonautonomous discrete KP equation , 1997 .

[15]  Dengyuan Chen,et al.  SYMMETRIES AND LIE ALGEBRA OF THE DIFFERENTIAL–DIFFERENCE KADOMSTEV–PETVIASHVILI HIERARCHY , 2009, 0908.0382.

[16]  S. Carillo,et al.  Squared Eigenfunction Symmetries for Soliton Equations: Part I , 1998 .

[17]  L. Dickey Modified KP and Discrete KP , 1999 .

[18]  SQUARED EIGENFUNCTIONS OF THE (MODIFIED) KP HIERARCHY AND SCATTERING PROBLEMS OF LOEWNER TYPE , 1994 .

[19]  K. M. Tamizhmani,et al.  Lax pairs, symmetries and conservation laws of a differential-difference equation—Sato's approach , 1997 .

[20]  W. Oevel Darboux theorems and Wronskian formulas for integrable systems: I. Constrained KP flows , 1993 .

[21]  P. Iliev,et al.  Commutative rings of difference operators and an adelic flag manifold , 2000 .

[22]  Li Shaowei,et al.  Sato's Bäcklund transformations, additional symmetries and ASvM formula for the discrete KP hierarchy , 2010 .