Una estructura neurodifusa para modelar la evapotranspiración instantánea en invernaderos

This paper shows the applicability of a neurofuzzy method applied to a tomato plant (Lycopersicon esculentum, Mill), in order to obtain a model of the instantaneous evapotranspiration. Two operational dynamics (diurnal and nocturnal) are defined in a hierarchical fuzzy model by a Takagi-Sugeno (T-S) type with linear consequents. The fuzzy selector of the two dynamics is the solar radiation measure. The fuzzy C-means algorithm is used to identify the fuzzy rules premises. The hierarchical fuzzy modelling is used to obtain a multi-model of the evapotranspiration cycles. In order to simplify the model structure, the variable of vapour pressure deficit (VPD) is introduced, and thus, a physical interpretation of the interior climate is obtained. VPD helps to preserve the quality and production level in the greenhouse crop.

[1]  F. Nuez,et al.  El Cultivo del tomate , 1995 .

[2]  H. Challa,et al.  Process-based humidity control regime for greenhouse crops , 2003 .

[3]  Virgilio López-Morales,et al.  JAPIEST: An integral intelligent system for the diagnosis and control of tomatoes diseases and pests in hydroponic greenhouses , 2008, Expert Syst. Appl..

[4]  M. Roh,et al.  CONTROL OF AMOUNT AND FREQUENCY OF IRRIGATION ACCORDING TO INTEGRATED SOLAR RADIATION IN CUCUMBER SUBSTRATE CULTURE , 1996 .

[5]  Hans-Peter Kläring,et al.  Strategies to control water and nutrient supplies to greenhouse crops. A review , 2001 .

[6]  George E. Meyer,et al.  A crop water stress index for tall fescue (Festuca arundinacea Schreb.) irrigation decision-making — a traditional method , 2001 .

[7]  Jean-François Balmat,et al.  Optimized fuzzy control of a greenhouse , 2002, Fuzzy Sets Syst..

[8]  Nick Sigrimis,et al.  Energy saving in greenhouses using temperature integration: a simulation survey , 2000 .

[9]  Ido Seginer,et al.  SE—Structures and Environment: The Penman–Monteith Evapotranspiration Equation as an Element in Greenhouse Ventilation Design , 2002 .

[10]  W. Ojeda-Bustamante,et al.  Requerimientos de riego para tomate de invernadero , 2007 .

[11]  H.-J. Tantau,et al.  Greenhouse climate control: an approach for integrated pest management , 2003 .

[12]  Yi-Chich Chiu,et al.  A Boolean algebra algorithm suitable for use in temperature-humidity control of a grafted seedling acclimatization chamber , 2005 .

[13]  Rodrigo Castañeda-Miranda,et al.  Fuzzy Greenhouse Climate Control System based on a Field Programmable Gate Array , 2006 .

[14]  Moti Schneider,et al.  A fuzzy irrigation controller system , 2000 .

[15]  Branimir Todorovic,et al.  Estimation of FAO Blaney-Criddle b Factor by RBF Network , 2000 .

[16]  R. S. Austin,et al.  A volumetric lysimeter system (VLS): an alternative to weighing lysimeters for plant-water relations studies , 2004 .

[17]  Marisa Gallardo,et al.  Evapotranspiration of horticultural crops in an unheated plastic greenhouse , 2005 .

[18]  J. Yen,et al.  Fuzzy Logic: Intelligence, Control, and Information , 1998 .

[19]  V. M. Salokhe,et al.  Water requirement of drip irrigated tomatoes grown in greenhouse in tropical environment , 2005 .

[20]  Juan Ignacio Montero,et al.  Evaluation and modelling of greenhouse cucumber-crop transpiration under high and low radiation conditions , 2005 .

[21]  Robert Babuska,et al.  Fuzzy Modeling for Control , 1998 .