Comparative analyses of cuticular waxes on various organs of faba bean (Vicia faba L.).

[1]  D. Xie,et al.  Overexpression of Artemisia annua Cinnamyl Alcohol Dehydrogenase Increases Lignin and Coumarin and Reduces Artemisinin and Other Sesquiterpenes , 2018, Front. Plant Sci..

[2]  T. Palosuo,et al.  Production of cereals in northern marginal areas: An integrated assessment of climate change impacts at the farm level. , 2018 .

[3]  R. Jetter,et al.  Moving beyond the ubiquitous: the diversity and biosynthesis of specialty compounds in plant cuticular waxes , 2017, Phytochemistry Reviews.

[4]  R. Jetter,et al.  Cuticular wax coverage and composition differ among organs of Taraxacum officinale. , 2017, Plant physiology and biochemistry : PPB.

[5]  K. Won,et al.  Cinnamyl Alcohol, the Bioactive Component of Chestnut Flower Absolute, Inhibits Adipocyte Differentiation in 3T3-L1 Cells by Downregulating Adipogenic Transcription Factors. , 2017, The American journal of Chinese medicine.

[6]  R. Jetter,et al.  Comparative Analyses of Cuticular Waxes on Various Organs of Potato (Solanum tuberosum L.). , 2017, Journal of agricultural and food chemistry.

[7]  C. R. Marinho,et al.  Beyond pollination: diversity of secretory structures during flower development in different legume lineages , 2017 .

[8]  C. Neinhuis,et al.  Attachment of honeybees and greenbottle flies to petal surfaces , 2017, Arthropod-Plant Interactions.

[9]  R. Jetter,et al.  Changes in cuticular wax coverage and composition on developing Arabidopsis leaves are influenced by wax biosynthesis gene expression levels and trichome density , 2017, Planta.

[10]  A. Duarte,et al.  Biological Properties of Plant-Derived Alkylresorcinols: Mini-Review. , 2016, Mini reviews in medicinal chemistry.

[11]  D. Kosma,et al.  Answering a four decade-old question on epicuticular wax biosynthesis , 2016, Journal of experimental botany.

[12]  Ø. Moestrup,et al.  Why Plants Were Terrestrial from the Beginning. , 2016, Trends in plant science.

[13]  C. Palacios,et al.  Esters and other constituents of the foliar cuticular wax of a soybean variety , 2015 .

[14]  Zhonghua Wang,et al.  Developmental Changes in Composition and Morphology of Cuticular Waxes on Leaves and Spikes of Glossy and Glaucous Wheat (Triticum aestivum L.) , 2015, PloS one.

[15]  G. Melo,et al.  From keel to inverted keel flowers: functional morphology of “upside down” papilionoid flowers and the behavior of their bee visitors , 2015, Plant Systematics and Evolution.

[16]  M. Suh,et al.  Advances in the understanding of cuticular waxes in Arabidopsis thaliana and crop species , 2015, Plant Cell Reports.

[17]  R. Jetter,et al.  Wax Layers on Cosmos bipinnatus Petals Contribute Unequally to Total Petal Water Resistance1[OPEN] , 2014, Plant Physiology.

[18]  M. Suh,et al.  Overexpression of Arabidopsis MYB96 confers drought resistance in Camelina sativa via cuticular wax accumulation , 2014, Plant Cell Reports.

[19]  Thomas Gaiser,et al.  What role can crop models play in supporting climate change adaptation decisions to enhance food security in Sub-Saharan Africa? , 2014 .

[20]  Álvaro Luna Biosynthesis and accumulation of very-long-chain alkylresorcinols in cuticular waxes of Secale cereale and Brachypodium distachyon , 2014 .

[21]  C. R. Marinho,et al.  Scent glands in legume flowers. , 2014, Plant biology.

[22]  J. Rose,et al.  The Formation and Function of Plant Cuticles1 , 2013, Plant Physiology.

[23]  W. Barthlott,et al.  Surface microstructures of daisy florets (Asteraceae) and characterization of their anisotropic wetting , 2013, Bioinspiration & biomimetics.

[24]  K. Luthman,et al.  Cinnamyl alcohol oxidizes rapidly upon air exposure , 2013, Contact dermatitis.

[25]  A. Mañas-Fernández,et al.  Arabidopsis ECERIFERUM2 Is a Component of the Fatty Acid Elongation Machinery Required for Fatty Acid Extension to Exceptional Lengths1[W][OA] , 2012, Plant Physiology.

[26]  M. Conyers,et al.  Leaf cuticular waxes and physiological parameters in alfalfa leaves as influenced by drought , 2012, Photosynthetica.

[27]  Y. Bi,et al.  Chemical composition and antifungal activity of cuticular wax isolated from Asian pear fruit (cv. Pingguoli) , 2011 .

[28]  G. Noga,et al.  Cuticular wax load and surface wettability of leaves and fruits collected from sweet cherry (Prunus avium) trees grown under field conditions or inside a polytunnel , 2011, Acta Physiologiae Plantarum.

[29]  P. Dixon,et al.  Biological origins of normal-chain hydrocarbons: a pathway model based on cuticular wax analyses of maize silks. , 2010, The Plant journal : for cell and molecular biology.

[30]  Y. Clough,et al.  Experimental evidence for stronger cacao yield limitation by pollination than by plant resources , 2010 .

[31]  P. Lamosa,et al.  Linear and branched poly(omega-hydroxyacid) esters in plant cutins. , 2010, Journal of agricultural and food chemistry.

[32]  Hiroyuki Morita,et al.  Structure and function of the chalcone synthase superfamily of plant type III polyketide synthases. , 2010, Natural product reports.

[33]  Jimmy R. Williams,et al.  Potential Economic Benefits of Adapting Agricultural Production Systems to Future Climate Change , 2010, Environmental management.

[34]  L. Samuels,et al.  Plant cuticles shine: advances in wax biosynthesis and export. , 2009, Current opinion in plant biology.

[35]  D. Kosma,et al.  The Impact of Water Deficiency on Leaf Cuticle Lipids of Arabidopsis1[W][OA] , 2009, Plant Physiology.

[36]  Lars Chittka,et al.  Floral Iridescence, Produced by Diffractive Optics, Acts As a Cue for Animal Pollinators , 2009, Science.

[37]  Kerstin Koch,et al.  The hydrophobic coatings of plant surfaces: epicuticular wax crystals and their morphologies, crystallinity and molecular self-assembly. , 2008, Micron.

[38]  R. Jetter,et al.  Sealing plant surfaces: cuticular wax formation by epidermal cells. , 2008, Annual review of plant biology.

[39]  R. Jetter,et al.  Very long chain alkylresorcinols accumulate in the intracuticular wax of rye (Secale cereale L.) leaves near the tissue surface. , 2008, Phytochemistry.

[40]  R. Jetter,et al.  Composition of Plant Cuticular Waxes , 2007 .

[41]  C. Jeffree,et al.  The Fine Structure of the Plant Cuticle , 2007 .

[42]  L. Schreiber,et al.  Cuticular wax deposition in growing barley (Hordeum vulgare) leaves commences in relation to the point of emergence of epidermal cells from the sheaths of older leaves , 2005, Planta.

[43]  A. M. Api,et al.  Fragrance material review on cinnamyl alcohol. , 2005, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[44]  M. Riederer Die Kutikula als Barriere zwischen terrestrischen Pflanzen und der Atmosphäre , 1991, Naturwissenschaften.

[45]  K. Hosokawa,et al.  Production of essential oils by flowers of Hyacinthus orientalis L. regenerated in vitro , 1995, Plant Cell Reports.

[46]  M. M. Mulder,et al.  Involvement of cinnamyl-alcohol dehydrogenase in the control of lignin formation in Sorghum bicolor L. Moench , 1991, Planta.

[47]  G. Verardo,et al.  A thorough study of the surface wax of apple fruits , 2003, Analytical and bioanalytical chemistry.

[48]  A. Stapleton,et al.  The maize epicuticular wax layer provides UV protection. , 2003, Functional plant biology : FPB.

[49]  Eran Pichersky,et al.  The formation and function of plant volatiles: perfumes for pollinator attraction and defense. , 2002, Current opinion in plant biology.

[50]  J. Tenorio,et al.  Residual transpiration rate, epicuticular wax load and leaf colour of pea plants in drought conditions. influence on harvest index and canopy temperature , 2001 .

[51]  K. Kuroda Analytical pyrolysis products derived from cinnamyl alcohol-end groups in lignins , 2000 .

[52]  G. Ramsay,et al.  Epicuticular waxes and volatiles from faba bean (Vicia faba) flowers , 1999 .

[53]  L. Schreiber,et al.  Ontogenetic and seasonal development of wax composition and cuticular transpiration of ivy (Hedera helix L.) sun and shade leaves , 1998, Planta.

[54]  Wilhelm Barthlott,et al.  Classification and terminology of plant epicuticular waxes , 1998 .

[55]  K. Christensen,et al.  Opera Botanica, 135: SEM-studies of epidermal patterns of petals in the angiosperms , 1998 .

[56]  L. Pecetti,et al.  Volatiles from Medicago sativa complex flowers , 1997 .

[57]  C. Westerkamp Keel blossoms: Bee flowers with adaptations against bees , 1997 .

[58]  H. Heinzen,et al.  Chemical basis of the resistance of barley seeds to pathogenic fungi. , 1997, Phytochemistry.

[59]  J. Pino,et al.  Volatiles of an alcoholic extract of flowers from Plumeria rubra L. var. acutifolia , 1994 .

[60]  K. Wong,et al.  Volatile Components of Mimusops elengi L. Flowers , 1994 .

[61]  P. Gülz Epicuticular Leaf Waxes in the Evolution of the Plant Kingdom , 1994 .

[62]  P. Gülz,et al.  Isomeric alkyl esters in Quercus robur leaf cuticular wax , 1993 .

[63]  A. Culbreath,et al.  Cuticular lipids from wild and cultivated peanuts and the relative resistance of these peanut species to fall armyworm and thrips , 1993 .

[64]  O. Pellmyr,et al.  Evolution of insect pollination and angiosperm diversification. , 1992, Trends in ecology & evolution.

[65]  M. Riederer,et al.  Comparative study of the composition of waxes extracted from isolated leaf cuticles and from whole leaves of Citrus: evidence for selective extraction , 1989 .

[66]  S. Larsson,et al.  Effects of Water Stress on Cuticular Transpiration Rate and Amount and Composition of Epicuticular Wax in Seedlings of Six Oat Varieties , 1978 .

[67]  Veb German Democratic Republic Production of cereals. , 1970 .