Why Trees Migrate So Fast: Confronting Theory with Dispersal Biology and the Paleorecord

Reid's paradox describes the fact that classical models cannot account for the rapid ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$10^{2}\,- \,10^{3}\,\mathrm{m\,yr}\,^{- 1}$$ \end{document} ) spread of trees at the end of the Pleistocene. I use field estimates of seed dispersal with an integrodifference equation and simulation models of population growth to show that dispersal data are compatible with rapid spread. Dispersal estimates lay to rest the possibility that rapid spread occurred by diffusion. The integrodifference model predicts that, if the seed shadow has a long ‘fat’ tail, then rapid spread is possible, despite short average dispersal distances. It further predicts that velocity is more sensitive to life history than is classical diffusion. Application of such models is frustrated because the tail of the seed shadow cannot be fitted to data. However, the data can be used to test a ‘long‐distance’ hypothesis against alternative (‘local’) models of dispersal using Akaike's Information Criterion and likelihood ratio tests. Tests show that data are consistent with >10% of seed dispersed as a long ( \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage[OT2,OT1]{fontenc} \newcommand\cyr{ \renewcommand\rmdefault{wncyr} \renewcommand\sfdefault{wncyss} \renewcommand\encodingdefault{OT2} \normalfont \selectfont} \DeclareTextFontCommand{\textcyr}{\cyr} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} \landscape $$10^{2}$$ \end{document} m) fat‐tailed kernel. Models based on such kernels predict spread as rapid as that inferred from the pollen record. If fat‐tailed dispersal explains these rapid rates, then it is surprising not to see large differences in velocities among taxa with contrasting life histories. The inference of rapid spread, together with lack of obvious life‐history effects, suggests velocities may have not reached their potentials, being stalled by rates of climate change, geography, or both.

[1]  George C. Hurtt,et al.  Reid's Paradox of Rapid Plant Migration Dispersal theory and interpretation of paleoecological records , 1998 .

[2]  M. B. Davis,et al.  Pleistocene biogeography of temperate deciduous forests , 1976 .

[3]  Yuan Ji,et al.  Fecundity and Dispersal in Plant Populations: Implications for Structure and Diversity , 1995, The American Naturalist.

[4]  M. Bush Amazonian speciation: a necessarily complex model , 1994 .

[5]  D. Janzen Herbivores and the Number of Tree Species in Tropical Forests , 1970, The American Naturalist.

[6]  G. MacDonald,et al.  The patterns of post-glacial spread of white spruce , 1986 .

[7]  C. Fastie,et al.  Causes and Ecosystem Consequences of Multiple Pathways of Primary Succession at Glacier Bay, Alaska , 1995 .

[8]  P. H. Leslie THE INTRINSIC RATE OF INCREASE AND THE OVERLAP OF SUCCESSIVE GENERATIONS IN A POPULATION OF GUILLEMOTS (URIA AALGE PONT.) , 1966 .

[9]  O. Diekmann,et al.  Thresholds and travelling waves for the geographical spread of infection , 1978, Journal of mathematical biology.

[10]  M. B. Davis,et al.  Paleoecology of Range Limits: Beech in the Upper Peninsula of Michigan , 1989 .

[11]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[12]  S. Pacala,et al.  SEEDLING RECRUITMENT IN FORESTS: CALIBRATING MODELS TO PREDICT PATTERNS OF TREE SEEDLING DISPERSION' , 1994 .

[13]  S. Webb,et al.  Beech Range Extension and Vegetation History: Pollen Stratigraphy of Two Wisconsin Lakes. , 1987, Ecology.

[14]  C. Reid The Origin of the British Flora , 2009, Nature.

[15]  B. Huntley,et al.  An Atlas of Past and Present Pollen Maps for Europe , 1984 .

[16]  Patrick J. Bartlein,et al.  VEGETATION AND CLIMATE CHANGE IN EASTERN NORTH AMERICA SINCE THE LAST GLACIAL MAXIMUM , 1991 .

[17]  James S. Clark,et al.  STAGES AND SPATIAL SCALES OF RECRUITMENT LIMITATION IN SOUTHERN APPALACHIAN FORESTS , 1998 .

[18]  H. Banks,et al.  Modeling holocene changes in the location and abundance of beech populations in Eastern North America , 1987 .

[19]  S. Hubbell Seed predation and the coexistence of tree species in tropical forests , 1980 .

[20]  W. C. Johnson,et al.  Dispersal of beech nuts by blue jays in fragmented landscapes. , 1985 .

[21]  Horst R. Thieme,et al.  Density-dependent regulation of spatially distributed populations and their asymptotic speed of spread , 1979 .

[22]  James S. Clark,et al.  Plant migration and climate change , 1997 .

[23]  The Effects of Variability on Metapopulation Dynamics and Rates of Invasion , 1994 .

[24]  N. Shigesada,et al.  Modeling Stratified Diffusion in Biological Invasions , 1995, The American Naturalist.

[25]  G. MacDonald Fossil Pollen Analysis and the Reconstruction of Plant Invasions , 1993 .

[26]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[27]  K. Bennett Post-glacial vegetation history: Ecological considerations , 1988 .

[28]  Mark A. Lewis,et al.  3. Variability, Patchiness, and J u m p Dispersal i n the Spread of an Invading Population , 1998 .

[29]  H. Birks Holocene isochrone maps and patterns of tree-spreading in the British Isles. , 1989 .

[30]  T. Webb,,et al.  The role of blue jays (Cyanocitta cristata L.) in the postglacial dispersal of fagaceous trees in eastern North America , 1989 .

[31]  M. Willson,et al.  Dispersal mode, seed shadows, and colonization patterns , 1993, Vegetatio.

[32]  Denis Mollison,et al.  The rate of spatial propagation of simple epidemics , 1972 .

[33]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[34]  Russell P. Balda,et al.  Coadaptations of the Clark's nutcracker and the pinon pine for efficient seed harvest and dispersal. , 1977 .

[35]  J. G. Skellam Random dispersal in theoretical populations , 1951, Biometrika.

[36]  Herbert W. Hethcote,et al.  Epidemic models: Their structure and relation to data , 1996 .

[37]  Johan A. J. Metz,et al.  Velocities of epidemic spread , 1995 .

[38]  J. G. Skellam Random dispersal in theoretical populations , 1951, Biometrika.

[39]  P. Driessche,et al.  Dispersal data and the spread of invading organisms. , 1996 .

[40]  S. Higgins,et al.  Modeling invasive plant spread: the role of plant-environment interactions and model structure. , 1996 .

[41]  D Mollison,et al.  Dependence of epidemic and population velocities on basic parameters. , 1991, Mathematical biosciences.

[42]  F. Vuilleumier An atlas of past and Present Pollen Maps for Europe: 0-13000 Years Ago , 1987 .

[43]  John T. Snow,et al.  Fallout of Debris from Tornadic Thunderstorms: A Historical Perspective and Two Examples from VORTEX , 1995 .

[44]  James S. Clark,et al.  Terrestrial biotic responses to environmental change and feedbacks to climate , 1996 .

[45]  H. Delcourt,et al.  Long-Term Forest Dynamics of the Temperate Zone , 1987 .

[46]  James S. Clark,et al.  Density-independent mortality, density compensation, gap formation, and self-thinning in plant populations , 1992 .