Li6ALa2Ta2O12 (A = Sr, Ba): Novel Garnet‐Like Oxides for Fast Lithium Ion Conduction

Oxides with the nominal chemical formula Li6ALa2Ta2O12 (A = Sr, Ba) have been prepared via a solid-state reaction in air using high purity La2O3, LiOH·H2O, Sr(NO3)2, Ba(NO3)2, and Ta2O5 and are characterized by powder X-ray diffraction (XRD) in order to identify the phase formation and AC impedance to determine the lithium ion conductivity. The powder XRD data of Li6ALa2Ta2O12 show that they are isostructural with the parent garnet-like compound Li5La3Ta2O12. The cubic lattice parameter was found to increase with increasing ionic size of the alkaline earth ions (Li6SrLa2Ta2O12: 12.808(2) A; Li6BaLa2Ta2O12: 12.946(3) A). AC impedance results show that both the strontium and barium members exhibit mainly a bulk contribution with a rather small grain-boundary contribution. The ionic conductivity increases with increasing ionic radius of the alkaline earth elements. The barium compound, Li6BaLa2Ta2O12, shows the highest ionic conductivity, 4.0×10–5 S cm–1 at 22 °C with an activation energy of 0.40 eV, which is comparable to other lithium ion conductors, especially with the presently employed solid electrolyte lithium phosphorus oxynitride (Lipon) for all-solid-state lithium ion batteries. DC electrical measurements using lithium-ion-blocking and reversible electrodes revealed that the electronic conductivity is very small, and a high electrochemical stability (&n62; 6 V/Li) was exhibited at room temperature. Interestingly, Li6ALa2Ta2O12 was found to be chemically stable with molten metallic lithium.

[1]  G. Jellison,et al.  A Stable Thin‐Film Lithium Electrolyte: Lithium Phosphorus Oxynitride , 1997 .

[2]  G. Adachi,et al.  Fast Li⊕ Conducting Ceramic Electrolytes , 1996 .

[3]  W. Weppner,et al.  Li9SiAlO8: A Lithium Ion Electrolyte for Voltages above 5.4 V , 1996 .

[4]  G. Adachi,et al.  High Li+ Conducting Ceramics , 1994 .

[5]  Takashi Uchida,et al.  High ionic conductivity in lithium lanthanum titanate , 1993 .

[6]  A. West,et al.  Review of crystalline lithium-ion conductors suitable for high temperature battery applications , 1997 .

[7]  V. Thangadurai,et al.  Use of simple ac technique to determine the ionic and electronic conductivities in pure and Fe-substituted SrSnO3 perovskites , 2002 .

[8]  H. Hong,et al.  Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors☆ , 1978 .

[9]  H. Kawai,et al.  Lithium Ion Conductivity of A‐Site Deficient Perovskite Solid Solution La0.67 − x Li3x TiO3 , 1994 .

[10]  V. Thangadurai,et al.  LiSr1.650.35B1.3B‘1.7O9 (B = Ti, Zr; B‘ = Nb, Ta): New Lithium Ion Conductors Based on the Perovskite Structure† , 1999 .

[11]  M. Casciola Preparation, structural characterization and conductivity of LiTixZr2−x(PO4)3 , 1990 .

[12]  F. Abbattista,et al.  Remarks on the binary systems Li2OMe2O5 (MeNb, Ta) , 1987 .

[13]  J. Kuwano,et al.  Formation of perovskite solid solutions and lithium-ion conductivity in the compositions, Li2xSr1−2xMIII0.5−xTa0.5+xO3 (M = Cr, Fe, Co, Al, Ga, In, Y) , 1997 .

[14]  Venkataraman Thangadurai,et al.  Lithium Lanthanum Titanates: A Review , 2003 .

[15]  John T. S. Irvine,et al.  Electroceramics: Characterization by Impedance Spectroscopy , 1990 .

[16]  K. Hayashi,et al.  Crystal structures of La3Li5M2O12 (M=Nb, Ta) , 1988 .

[17]  G. Nolze,et al.  POWDER CELL– a program for the representation and manipulation of crystal structures and calculation of the resulting X‐ray powder patterns , 1996 .

[18]  P. Birke,et al.  Electrolytic Stability Limit and Rapid Lithium Insertion in the Fast‐Ion‐Conducting Li0.29La0.57TiO3 Perovskite‐Type Compound , 1997 .

[19]  Venkataraman Thangadurai,et al.  Novel Fast Lithium Ion Conduction in Garnet‐Type Li5La3M2O12 (M = Nb, Ta) , 2003 .

[20]  W. Weppner Kinetic Aspects of Solid State Micro-Ionic Devices , 1990 .

[21]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[22]  R. Huggins,et al.  Ionic Conductivity of Lithium Orthosilicate—Lithium Phosphate Solid Solutions , 1977 .

[23]  A. F. Wells,et al.  Structural Inorganic Chemistry , 1971, Nature.