Evolving fuzzy systems for data streams: a survey

Evolving fuzzy systems (EFSs) can be regarded as intelligent systems based on fuzzy rule‐based or neuro‐fuzzy models with the ability to learn continuously and to gradually develop with the objective of enhancing their performance. Such systems learn in online mode by analyzing incoming samples, and adjusting both structure and parameters. The objective of this chapter is to present a brief overview of some early as well as recent EFSs by focusing on their architecture, design algorithms along with the merits and demerits, and various applications. © 2011 John Wiley & Sons, Inc. WIREs Data Mining Knowl Discov 2011 1 461–476 DOI: 10.1002/widm.42

[1]  Ronald R. Yager,et al.  A model of participatory learning , 1990, IEEE Trans. Syst. Man Cybern..

[2]  Bernd Fritzke,et al.  Growing cell structures--A self-organizing network for unsupervised and supervised learning , 1994, Neural Networks.

[3]  Nikola K. Kasabov,et al.  The ECOS Framework and the ECO Learning Method for Evolving Connectionist Systems , 1998, Journal of Advanced Computational Intelligence and Intelligent Informatics.

[4]  Jerry M. Mendel,et al.  Generating fuzzy rules by learning from examples , 1992, IEEE Trans. Syst. Man Cybern..

[5]  Thorsten Joachims,et al.  Detecting Concept Drift with Support Vector Machines , 2000, ICML.

[6]  T. Martin McGinnity,et al.  On utilizing self-organizing fuzzy neural networks for financial forecasts in the NN5 forecasting competition , 2010, The 2010 International Joint Conference on Neural Networks (IJCNN).

[7]  Nikola K. Kasabov,et al.  Evolving fuzzy neural networks for supervised/unsupervised online knowledge-based learning , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[8]  Chuen-Tsai Sun,et al.  Functional equivalence between radial basis function networks and fuzzy inference systems , 1993, IEEE Trans. Neural Networks.

[9]  Ronald R. Yager,et al.  Participatory Learning in Fuzzy Clustering , 2005, The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05..

[10]  Plamen P. Angelov,et al.  Flexible models with evolving structure , 2004, Int. J. Intell. Syst..

[11]  Babak Hassibi,et al.  Second Order Derivatives for Network Pruning: Optimal Brain Surgeon , 1992, NIPS.

[12]  Nikola K. Kasabov,et al.  ECOS: Evolving Connectionist Systems and the ECO Learning Paradigm , 1998, ICONIP.

[13]  Plamen P. Angelov,et al.  Autonomous visual self-localization in completely unknown environment , 2007, 2012 IEEE Conference on Evolving and Adaptive Intelligent Systems.

[14]  Plamen P. Angelov,et al.  Evolving Fuzzy-Rule-Based Classifiers From Data Streams , 2008, IEEE Transactions on Fuzzy Systems.

[15]  Plamen Angelov,et al.  Intelligent interrogation of mid-IR spectroscopy data from exfoliative cervical cytology using self-learning classifier eClass , 2008 .

[16]  Plamen P. Angelov,et al.  Adaptive Inferential Sensors Based on Evolving Fuzzy Models , 2010, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[17]  Yinghua Lin,et al.  A fuzzy approach to input variable identification , 1994, Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference.

[18]  Plamen P. Angelov,et al.  On-line identification of MIMO evolving Takagi- Sugeno fuzzy models , 2004, 2004 IEEE International Conference on Fuzzy Systems (IEEE Cat. No.04CH37542).

[19]  F. Gomide,et al.  Participatory Evolving Fuzzy Modeling , 2006, 2006 International Symposium on Evolving Fuzzy Systems.

[20]  Tzung-Pei Hong,et al.  Finding relevant attributes and membership functions , 1999, Fuzzy Sets Syst..

[21]  Nikola K. Kasabov,et al.  DENFIS: dynamic evolving neural-fuzzy inference system and its application for time-series prediction , 2002, IEEE Trans. Fuzzy Syst..

[22]  Stephen Grossberg,et al.  Adaptive resonance theory: ART , 1998, An Introduction to Neural Networks.

[23]  Plamen P. Angelov,et al.  On-line Design of Takagi-Sugeno Models , 2003, IFSA.

[24]  Plamen P. Angelov,et al.  Identification of evolving fuzzy rule-based models , 2002, IEEE Trans. Fuzzy Syst..

[25]  Jesús S. Aguilar-Ruiz,et al.  Incremental rule learning based on example nearness from numerical data streams , 2005, SAC '05.

[26]  Plamen Angelov,et al.  Evolving Rule-Based Models: A Tool For Design Of Flexible Adaptive Systems , 2002 .

[27]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[28]  Tsau Young Lin,et al.  Granular Computing , 2003, RSFDGrC.

[29]  R. Gorez,et al.  A fuzzy clustering method for the identification of fuzzy models for dynamic systems , 1994, Proceedings of 1994 9th IEEE International Symposium on Intelligent Control.

[30]  Kwok-Wo Wong,et al.  A pruning method for the recursive least squared algorithm , 2001, Neural Networks.

[31]  Witold Pedrycz,et al.  Granular Computing - The Emerging Paradigm , 2007 .

[32]  Plamen P. Angelov,et al.  A simple fuzzy rule-based system through vector membership and kernel-based granulation , 2010, 2010 5th IEEE International Conference Intelligent Systems.

[33]  Plamen P. Angelov,et al.  Evolving fuzzy systems , 2008, Scholarpedia.

[34]  Stephen R. Marsland,et al.  A self-organising network that grows when required , 2002, Neural Networks.

[35]  R. Yager,et al.  Approximate Clustering Via the Mountain Method , 1994, IEEE Trans. Syst. Man Cybern. Syst..

[36]  Plamen P. Angelov,et al.  Simpl_eTS: a simplified method for learning evolving Takagi-Sugeno fuzzy models , 2005, The 14th IEEE International Conference on Fuzzy Systems, 2005. FUZZ '05..

[37]  Ryszard S. Michalski,et al.  Incremental learning with partial instance memory , 2002, Artif. Intell..

[38]  Plamen P. Angelov,et al.  Evolving classification of agents’ behaviors: a general approach , 2010, Evol. Syst..

[39]  Nikola Kasabov On-Line Adaptive Speech Recognition , 2003 .

[40]  Stephen L. Chiu,et al.  Fuzzy Model Identification Based on Cluster Estimation , 1994, J. Intell. Fuzzy Syst..

[41]  Nikhil R. Pal,et al.  Soft computing for feature analysis , 1999, Fuzzy Sets Syst..

[42]  Nikola K. Kasabov,et al.  Evolving connectionist systems for knowledge discovery from gene expression data of cancer tissue , 2003, Artif. Intell. Medicine.

[43]  Edwin Lughofer,et al.  Extensions of vector quantization for incremental clustering , 2008, Pattern Recognit..

[44]  Plamen Angelov,et al.  Evolving Takagi‐Sugeno Fuzzy Systems from Streaming Data (eTS+) , 2010 .

[45]  D.P. Filev,et al.  An approach to online identification of Takagi-Sugeno fuzzy models , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[46]  P. Angelov,et al.  Evolving Fuzzy Systems from Data Streams in Real-Time , 2006, 2006 International Symposium on Evolving Fuzzy Systems.

[47]  Gerhard Widmer,et al.  Learning in the Presence of Concept Drift and Hidden Contexts , 1996, Machine Learning.

[48]  Robert Babuška,et al.  An overview of fuzzy modeling for control , 1996 .

[49]  P. Angelov,et al.  Evolving rule-based models: A tool for intelligent adaptation , 2001, Proceedings Joint 9th IFSA World Congress and 20th NAFIPS International Conference (Cat. No. 01TH8569).

[50]  Paramasivan Saratchandran,et al.  Sequential Adaptive Fuzzy Inference System (SAFIS) for nonlinear system identification and prediction , 2006, Fuzzy Sets Syst..

[51]  Edwin Lughofer,et al.  On-line evolving image classifiers and their application to surface inspection , 2010, Image Vis. Comput..

[52]  Jyh-Shing Roger Jang,et al.  ANFIS: adaptive-network-based fuzzy inference system , 1993, IEEE Trans. Syst. Man Cybern..

[53]  Edwin Lughofer,et al.  FLEXFIS: A Robust Incremental Learning Approach for Evolving Takagi–Sugeno Fuzzy Models , 2008, IEEE Transactions on Fuzzy Systems.

[54]  Chuen-Chien Lee FUZZY LOGIC CONTROL SYSTEMS: FUZZY LOGIC CONTROLLER - PART I , 1990 .

[55]  Nikola Kasabov,et al.  Evolving Connectionist Systems: Methods and Applications in Bioinformatics, Brain Study and Intelligent Machines , 2002, IEEE Transactions on Neural Networks.

[56]  Bernd Fritzke,et al.  A Growing Neural Gas Network Learns Topologies , 1994, NIPS.

[57]  T. Martin McGinnity,et al.  An approach for on-line extraction of fuzzy rules using a self-organising fuzzy neural network , 2005, Fuzzy Sets Syst..

[58]  Karan Harbison-Briggs,et al.  Knowledge aquisition : principles and guidelines , 1989 .

[59]  John Yen,et al.  Improving the interpretability of TSK fuzzy models by combining global learning and local learning , 1998, IEEE Trans. Fuzzy Syst..