dReal: An SMT Solver for Nonlinear Theories over the Reals

We describe the open-source tool dReal, an SMT solver for nonlinear formulas over the reals. The tool can handle various nonlinear real functions such as polynomials, trigonometric functions, exponential functions, etc. dReal implements the framework of δ-complete decision procedures: It returns either unsat or δ-sat on input formulas, where δ is a numerical error bound specified by the user. dReal also produces certificates of correctness for both δ-sat (a solution) and unsat answers (a proof of unsatisfiability).

[1]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[2]  George E. Collins,et al.  Hauptvortrag: Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975, Automata Theory and Formal Languages.

[3]  Rajeev Alur,et al.  A Temporal Logic of Nested Calls and Returns , 2004, TACAS.

[4]  Thomas C. Hales,et al.  Introduction to the Flyspeck Project , 2005, Mathematics, Algorithms, Proofs.

[5]  Frédéric Benhamou,et al.  Algorithm 852: RealPaver: an interval solver using constraint satisfaction techniques , 2006, TOMS.

[6]  Toby Walsh,et al.  Handbook of Constraint Programming , 2006, Handbook of Constraint Programming.

[7]  Frédéric Benhamou,et al.  Continuous and Interval Constraints , 2006, Handbook of Constraint Programming.

[8]  Martin Fränzle,et al.  Efficient Solving of Large Non-linear Arithmetic Constraint Systems with Complex Boolean Structure , 2007, J. Satisf. Boolean Model. Comput..

[9]  Lawrence C. Paulson,et al.  MetiTarski: An Automatic Prover for the Elementary Functions , 2008, AISC/MKM/Calculemus.

[10]  Martin Fränzle,et al.  SAT Modulo ODE: A Direct SAT Approach to Hybrid Systems , 2008, ATVA.

[11]  Salvador Lucas,et al.  Solving Non-linear Polynomial Arithmetic via SAT Modulo Linear Arithmetic , 2009, CADE.

[12]  André Platzer,et al.  Real World Verification , 2009, CADE.

[13]  Paul B. Jackson,et al.  Combined Decision Techniques for the Existential Theory of the Reals , 2009, Calculemus/MKM.

[14]  Malay K. Ganai,et al.  Efficient decision procedure for non-linear arithmetic constraints using CORDIC , 2009, 2009 Formal Methods in Computer-Aided Design.

[15]  Philipp Rümmer,et al.  Real World Verication , 2009 .

[16]  Alberto L. Sangiovanni-Vincentelli,et al.  CalCS: SMT solving for non-linear convex constraints , 2010, Formal Methods in Computer Aided Design.

[17]  Roberto Bruttomesso,et al.  The OpenSMT Solver , 2010, TACAS.

[18]  Sriram Sankaranarayanan,et al.  Integrating ICP and LRA solvers for deciding nonlinear real arithmetic problems , 2010, Formal Methods in Computer Aided Design.

[19]  Clark W. Barrett,et al.  The SMT-LIB Standard Version 2.0 , 2010 .

[20]  Mohamed Nassim Seghir,et al.  A Lightweight Approach for Loop Summarization , 2011, ATVA.

[21]  Edmund M. Clarke,et al.  δ-Complete Decision Procedures for Satisfiability over the Reals , 2012, IJCAR.

[22]  Edmund M. Clarke,et al.  Delta-Decidability over the Reals , 2012, 2012 27th Annual IEEE Symposium on Logic in Computer Science.

[23]  Dejan Jovanović,et al.  Solving Non-linear Arithmetic , 2012, IJCAR.

[24]  César A. Muñoz,et al.  Formalization of Bernstein Polynomials and Applications to Global Optimization , 2013, Journal of Automated Reasoning.