Sparsity lower bounds for dimensionality reducing maps

We give near-tight lower bounds for the sparsity required in several dimensionality reducing linear maps. First, consider the Johnson-Lindenstrauss (JL) lemma which states that for any set of <i>n</i> vectors in R<sup>d</sup> there is an A∈R<sup>m x d</sup> with m = O(ε<sup>-2</sup>log n) such that mapping by <i>A</i> preserves the pairwise Euclidean distances up to a 1 pm ε factor. We show there exists a set of n vectors such that any such A with at most s non-zero entries per column must have s = Ω(ε<sup>-1</sup>log n/log(1/ε)) if m < O(n/log(1/ε)). This improves the lower bound of Ω(min{ε<sup>-2</sup>, ε<sup>-1</sup>√(log<sub>m</sub> d)) by [Dasgupta-Kumar-Sarlos, STOC 2010], which only held against the stronger property of distributional JL, and only against a certain restricted class of distributions. Meanwhile our lower bound is against the JL lemma itself, with no restrictions. Our lower bound matches the sparse JL upper bound of [Kane-Nelson, SODA 2012] up to an O(log(1/ε)) factor. Next, we show that any m x n matrix with the <i>k</i>-restricted isometry property (RIP) with constant distortion must have Ω(k log(n/k)) non-zeroes per column if m=O(k log (n/k)), the optimal number of rows for RIP, and k < n/polylog <i>n</i>. This improves the previous lower bound of Ω(min{k, n/m}) by [Chandar, 2010] and shows that for most <i>k</i> it is impossible to have a sparse RIP matrix with an optimal number of rows. Both lower bounds above also offer a tradeoff between sparsity and the number of rows. Lastly, we show that any oblivious distribution over subspace embedding matrices with 1 non-zero per column and preserving distances in a d dimensional-subspace up to a constant factor must have at least Ω(d<sup>2</sup>) rows. This matches an upper bound in [Nelson-Nguyên, arXiv abs/1211.1002] and shows the impossibility of obtaining the best of both of constructions in that work, namely 1 non-zero per column and d ⋅ polylog <i>d</i> rows.

[1]  W. B. Johnson,et al.  Extensions of Lipschitz mappings into Hilbert space , 1984 .

[2]  J. Lindenstrauss,et al.  Geometric Aspects of Functional Analysis , 1987 .

[3]  Y. Gordon On Milman's inequality and random subspaces which escape through a mesh in ℝ n , 1988 .

[4]  Peter Frankl,et al.  The Johnson-Lindenstrauss lemma and the sphericity of some graphs , 1987, J. Comb. Theory B.

[5]  Piotr Indyk,et al.  Approximate nearest neighbors: towards removing the curse of dimensionality , 1998, STOC '98.

[6]  Piotr Indyk,et al.  Algorithmic applications of low-distortion geometric embeddings , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[7]  Dimitris Achlioptas,et al.  Database-friendly random projections: Johnson-Lindenstrauss with binary coins , 2003, J. Comput. Syst. Sci..

[8]  Sanjoy Dasgupta,et al.  An elementary proof of a theorem of Johnson and Lindenstrauss , 2003, Random Struct. Algorithms.

[9]  Santosh S. Vempala,et al.  The Random Projection Method , 2005, DIMACS Series in Discrete Mathematics and Theoretical Computer Science.

[10]  S. Mendelson,et al.  Empirical processes and random projections , 2005 .

[11]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[12]  M. Talagrand The Generic chaining : upper and lower bounds of stochastic processes , 2005 .

[13]  D. J. H. Garling,et al.  The Cauchy-Schwarz Master Class: An Introduction to the Art of Mathematical Inequalities by J. Michael Steele , 2005, Am. Math. Mon..

[14]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[15]  Santosh S. Vempala,et al.  An algorithmic theory of learning: Robust concepts and random projection , 1999, Machine Learning.

[16]  Tamás Sarlós,et al.  Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[17]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[18]  Sanjeev Arora,et al.  A Fast Random Sampling Algorithm for Sparsifying Matrices , 2006, APPROX-RANDOM.

[19]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[20]  David L. Donoho,et al.  Sparse Solution Of Underdetermined Linear Equations By Stagewise Orthogonal Matching Pursuit , 2006 .

[21]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[22]  D. Donoho,et al.  Sparse MRI: The application of compressed sensing for rapid MR imaging , 2007, Magnetic resonance in medicine.

[23]  James Demmel,et al.  Fast linear algebra is stable , 2006, Numerische Mathematik.

[24]  Jirí Matousek,et al.  On variants of the Johnson–Lindenstrauss lemma , 2008, Random Struct. Algorithms.

[25]  P. Indyk,et al.  Near-Optimal Sparse Recovery in the L1 Norm , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[26]  Dennis M. Wilkinson,et al.  Large-Scale Parallel Collaborative Filtering for the Netflix Prize , 2008, AAIM.

[27]  Nir Ailon,et al.  Fast Dimension Reduction Using Rademacher Series on Dual BCH Codes , 2008, SODA '08.

[28]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[29]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[30]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[31]  P. Indyk,et al.  Near-Optimal Sparse Recovery in the L1 Norm , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[32]  Kilian Q. Weinberger,et al.  Feature hashing for large scale multitask learning , 2009, ICML '09.

[33]  Bernard Chazelle,et al.  The Fast Johnson--Lindenstrauss Transform and Approximate Nearest Neighbors , 2009, SIAM J. Comput..

[34]  Piotr Indyk,et al.  Sequential Sparse Matching Pursuit , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[35]  Rahul Garg,et al.  Gradient descent with sparsification: an iterative algorithm for sparse recovery with restricted isometry property , 2009, ICML '09.

[36]  Deanna Needell,et al.  Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit , 2007, Found. Comput. Math..

[37]  Noga Alon,et al.  Perturbed Identity Matrices Have High Rank: Proof and Applications , 2009, Combinatorics, Probability and Computing.

[38]  David P. Woodruff,et al.  Lower bounds for sparse recovery , 2010, SODA '10.

[39]  Venkat Chandar,et al.  Sparse graph codes for compression, sensing, and secrecy , 2010 .

[40]  Anirban Dasgupta,et al.  A sparse Johnson: Lindenstrauss transform , 2010, STOC '10.

[41]  Rafail Ostrovsky,et al.  Rademacher Chaos, Random Eulerian Graphs and The Sparse Johnson-Lindenstrauss Transform , 2010, ArXiv.

[42]  Daniel M. Kane,et al.  A Derandomized Sparse Johnson-Lindenstrauss Transform , 2010, Electron. Colloquium Comput. Complex..

[43]  R. Vershynin,et al.  Signal Recovery from Inaccurate and Incomplete Measurements via Regularized Orthogonal Matching Pursuit , 2010 .

[44]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[45]  Rachel Ward,et al.  New and Improved Johnson-Lindenstrauss Embeddings via the Restricted Isometry Property , 2010, SIAM J. Math. Anal..

[46]  Joel A. Tropp,et al.  Improved Analysis of the subsampled Randomized Hadamard Transform , 2010, Adv. Data Sci. Adapt. Anal..

[47]  Nir Ailon,et al.  An almost optimal unrestricted fast Johnson-Lindenstrauss transform , 2010, SODA '11.

[48]  Simon Foucart,et al.  Hard Thresholding Pursuit: An Algorithm for Compressive Sensing , 2011, SIAM J. Numer. Anal..

[49]  David P. Woodruff,et al.  Low rank approximation and regression in input sparsity time , 2012, STOC '13.

[50]  Gary L. Miller,et al.  Iterative Approaches to Row Sampling , 2012, ArXiv.

[51]  David P. Woodruff,et al.  Fast approximation of matrix coherence and statistical leverage , 2011, ICML.

[52]  Jean-Luc Starck,et al.  Sparse Solution of Underdetermined Systems of Linear Equations by Stagewise Orthogonal Matching Pursuit , 2012, IEEE Transactions on Information Theory.

[53]  Huy L. Nguyen,et al.  OSNAP: Faster Numerical Linear Algebra Algorithms via Sparser Subspace Embeddings , 2012, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.

[54]  Michael W. Mahoney,et al.  Low-distortion subspace embeddings in input-sparsity time and applications to robust linear regression , 2012, STOC '13.

[55]  Daniel M. Kane,et al.  Sparser Johnson-Lindenstrauss Transforms , 2010, JACM.

[56]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.