Osmophores and floral fragrance in Anacardium humile and Mangifera indica (Anacardiaceae): an overlooked secretory structure in Sapindales

Abstract Flowers of Anacardiaceae and other Sapindales typically produce nectar, but scent, often associated with a reward for pollinators, has surprisingly been mentioned only rarely for members of the family and order. However, flowers of Anacardium humile and Mangifera indica produce a strong sweet scent. The origin and composition of these floral scents is the subject of this study. Screening of potential osmophores on the petals and investigations of their anatomy were carried out by light, scanning and transmission electron microscopy. The composition of the floral fragrance was characterized by gas chromatography–mass spectrometry. In both species, the base of the adaxial side of each petal revealed specialized secretory epidermal cells which are essentially similar in structure and distinct from all other neighbouring cells. These cells also showed evidence of granulocrine secretory mechanisms and slight specific variations in their subcellular apparatus coinciding with the respective composition of the floral fragrance, predominantly composed of sesquiterpenes in A. humile and monoterpenes in M. indica. This study reports the presence of osmophores for the first time in flowers of Anacardiaceae and confirms the link between the ultrastructural features of their secretory cells and the volatiles produced by the flowers. The flowers of most Sapindales, including Anacardiaceae, are nectariferous. However, the presence of osmophores has only been described for very few genera of Rutaceae and Sapindaceae. Both the occurrence of osmophores and fragrance may have largely been overlooked in Anacardiaceae and Sapindales until now. Further studies are needed to better understand the nature and diversity of the interactions of their nectariferous flowers with their pollinators.

[1]  A. Börner,et al.  Anacardiaceae , 2022, Atlas of Stem Anatomy of Arctic and Alpine Plants Around the Globe.

[2]  D. Demarco,et al.  Diversity of floral nectary secretions and structure, and implications for their evolution in Anacardiaceae , 2018 .

[3]  C. R. Marinho,et al.  Chemical composition and secretion biology of the floral bouquet in legume trees (Fabaceae) , 2018 .

[4]  K. Summerville,et al.  Great Diversity of Insect Floral Associates May Partially Explain Ecological Success of Poison Ivy (Toxicodendron Radicans Subsp. Negundo [Greene] Gillis, Anacardiaceae) , 2018, The Great Lakes Entomologist.

[5]  M. O'brien Notes on Dianthidium Simile (Cresson) (Hymenoptera: Megachilidae) in Michigan , 2018, The Great Lakes Entomologist.

[6]  D. Demarco Floral glands in asclepiads: structure, diversity and evolution , 2017 .

[7]  A. Fernie,et al.  The Sexual Advantage of Looking, Smelling, and Tasting Good: The Metabolic Network that Produces Signals for Pollinators. , 2017, Trends in plant science.

[8]  C. Schlindwein,et al.  Unveiling the osmophores of Philodendron adamantinum (Araceae) as a means to understanding interactions with pollinators , 2017, Annals of botany.

[9]  É. A. Paiva How do secretory products cross the plant cell wall to be released? A new hypothesis involving cyclic mechanical actions of the protoplast. , 2016, Annals of botany.

[10]  D. Demarco,et al.  Protection and attraction: bracts and secretory structures in reduced inflorescences of Malpighiales , 2016 .

[11]  L. Galetto,et al.  Stages of development of the floral secretory disk in Tapirira guianensis Aubl. (Anacardiaceae), a dioecious species , 2015 .

[12]  D. Demarco,et al.  Calicinal trichomes of Adenocalymma magnificum (Bignoniaceae) producing lipophilic substances: ultrastructural and functional aspects , 2015 .

[13]  E. Guimarães,et al.  Structure and secretion mechanisms of floral glands in Diplopterys pubipetala (Malpighiaceae), a neotropical species , 2015 .

[14]  L. Amorim,et al.  Structural and biochemical characteristics of citrus flowers associated with defence against a fungal pathogen , 2014, AoB PLANTS.

[15]  D. Daly,et al.  To move or to evolve: contrasting patterns of intercontinental connectivity and climatic niche evolution in “Terebinthaceae” (Anacardiaceae and Burseraceae) , 2014, Front. Genet..

[16]  M. Sazima,et al.  Osmophore structure and phylogeny of Cirrhaea (Orchidaceae, Stanhopeinae) , 2014 .

[17]  M. Kozieradzka-Kiszkurno,et al.  Morphological, histological and ultrastructural features of osmophores and nectary of Bulbophyllum wendlandianum (Kraenzl.) Dammer (B. section Cirrhopetalum Lindl., Bulbophyllinae Schltr., Orchidaceae) , 2014, Plant Systematics and Evolution.

[18]  G. Szymczak,et al.  Floral elaiophore structure in four representatives of the Ornithocephalus clade (Orchidaceae: Oncidiinae). , 2012, Annals of botany.

[19]  Natalia Dudareva,et al.  The shikimate pathway and aromatic amino Acid biosynthesis in plants. , 2012, Annual review of plant biology.

[20]  E. Carasek,et al.  Volatile compounds of leaves and fruits of Mangifera indica var. coquinho (Anacardiaceae) obtained using solid phase microextraction and hydrodistillation. , 2011, Food chemistry.

[21]  U. Albuquerque,et al.  Reproductive biology of Spondias tuberosa Arruda (Anacardiaceae), an endemic fructiferous species of the caatinga (dry forest), under different management conditions in northeastern Brazil , 2011 .

[22]  P. K. Endress Flower Structure and Trends of Evolution in Eudicots and Their Major Subclades1 , 2010 .

[23]  Yan-qing Liu,et al.  Comparison of Microwave-Assisted and Conventional Hydrodistillation in the Extraction of Essential Oils from Mango (Mangifera indica L.) Flowers , 2010, Molecules.

[24]  C. Cardoso,et al.  Identification of the Volatile Compounds of Fruit Oil of Anacardium humile (Anacardiaceae) , 2010 .

[25]  E. L. Borba,et al.  Morphological and histological characterization of the osmophores and nectaries of four species of Acianthera (Orchidaceae: Pleurothallidinae) , 2010, Plant Systematics and Evolution.

[26]  N. Blüthgen,et al.  Floral scents repel facultative flower visitors, but attract obligate ones. , 2010, Annals of botany.

[27]  C. Cardoso,et al.  Identification of the Volatile Compounds of Leaf Oil of Anacardium humile (Anacardiaceae) , 2010 .

[28]  Geraldine A. Wright,et al.  The evolution of floral scent: the influence of olfactory learning by insect pollinators on the honest signalling of floral rewards , 2009 .

[29]  P. K. Endress,et al.  Comparative floral morphology and anatomy of Anacardiaceae and Burseraceae (Sapindales), with a special focus on gynoecium structure and evolution , 2009 .

[30]  M. Sazima,et al.  Osmophore and elaiophores of Grobya amherstiae (Catasetinae, Orchidaceae) and their relation to pollination. , 2009 .

[31]  E. Guimarães,et al.  Pollination biology of Jacaranda oxyphylla with an emphasis on staminode function. , 2008, Annals of botany.

[32]  R. Raguso Wake Up and Smell the Roses: The Ecology and Evolution of Floral Scent , 2008 .

[33]  M. Riederer Introduction: Biology of the Plant Cuticle , 2007 .

[34]  M. T. A. García,et al.  Ultrastructure of the corona of scented and scentless flowers of Passiflora spp. (Passifloraceae) , 2007 .

[35]  E. Haston,et al.  The systematic relationships of glucosinolate‐producing plants and related families: a cladistic investigation based on morphological and molecular characters , 2006 .

[36]  B. Piechulla,et al.  Localization of the Synthesis and Emission of Scent Compounds within the Flower , 2006 .

[37]  J. Gershenzon,et al.  Diversity and distribution of floral scent , 2006, The Botanical Review.

[38]  A. Aharoni,et al.  Volatile science? Metabolic engineering of terpenoids in plants. , 2005, Trends in plant science.

[39]  R. Evert Esau's Plant Anatomy,: Meristems, Cells And Tissues Of The Plant Body- Their Structure, Function And Development , 2005 .

[40]  S. Dötterl,et al.  Spatial fragrance patterns in flowers of Silene latifolia: Lilac compounds as olfactory nectar guides? , 2005, Plant Systematics and Evolution.

[41]  L. Ascensão,et al.  Comparative structure of the labellum in Ophrys fusca and O. lutea (Orchidaceae). , 2005, American journal of botany.

[42]  R. Croteau,et al.  Organization of Monoterpene Biosynthesis in Mentha. Immunocytochemical Localizations of Geranyl Diphosphate Synthase, Limonene-6-Hydroxylase, Isopiperitenol Dehydrogenase, and Pulegone Reductase1 , 2004, Plant Physiology.

[43]  F. Hadacek,et al.  Contributions to the functional anatomy and biology of Nelumbo nucifera (Nelumbonaceae) III. An ecological reappraisal of floral organs , 2004, Plant Systematics and Evolution.

[44]  Tatiane Maria Rodrigues,et al.  Anatomia e ultra-estrutura do pulvino primário de Pterodon pubescens Benth. (Fabaceae - Faboideae) , 2004 .

[45]  K. L. Davies.,et al.  Lipoidal labellar secretions in Maxillaria ruiz & pav. (Orchidaceae). , 2003, Annals of botany.

[46]  I. Groth,et al.  Floral scents in butterfly-pollinated plants: possible convergence in chemical composition , 2002 .

[47]  J. E. Cardoso,et al.  Diseases of cashew nut plants (Anacardium occidentale L.) in Brazil , 2002 .

[48]  R. Yamaoka,et al.  Chemical Divergence in Floral Scents of Magnolia and Allied Genera (Magnoliaceae) , 1997 .

[49]  B. Freitas,et al.  The role of wind and insects in cashew (Anacardium occidentale) pollination in NE Brazil , 1996, The Journal of Agricultural Science.

[50]  J. Considine,et al.  Flower and Volatile Oil Ontogeny in Boronia megastigma , 1995 .

[51]  D. Kunkel,et al.  Pathway of terpene excretion by the appendix of Sauromatum guttatum. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[52]  C. Ronning,et al.  Identification of cultivars and validation of genetic relationships in Mangifera indica L. using RAPD markers , 1995, Theoretical and Applied Genetics.

[53]  P. K. Endress,et al.  Diversity and evolutionary biology of tropical flowers , 1994 .

[54]  A. Cocucci,et al.  The perfume flowers ofCyphomandra (Solanaceae): Pollination by euglossine bees, bellows mechanism, osmophores, and volatiles , 1993, Plant Systematics and Evolution.

[55]  S. Renner,et al.  The role of scent glands in pollination : on the structure and function of osmophores , 1992 .

[56]  C. Quinn,et al.  Floral structure and evolution in the Anacardiaceae , 1991 .

[57]  W. L. Stern,et al.  Osmophores of Stanhopea (Orchidaceae) , 1987 .

[58]  S. Mori,et al.  The cashew and its relatives (Anacardium: Anacardiaceae) , 1987 .

[59]  W. L. Stern,et al.  Ultrastructure of osmophores in Restrepia (Orchidaceae) , 1983 .

[60]  S. Mukherjee,et al.  Origin of mango (Mangifera indica) , 1972, Economic Botany.

[61]  E. Reynolds THE USE OF LEAD CITRATE AT HIGH pH AS AN ELECTRON-OPAQUE STAIN IN ELECTRON MICROSCOPY , 1963, The Journal of cell biology.

[62]  M. L. Watson Staining of Tissue Sections for Electron Microscopy with Heavy Metals , 1958, The Journal of biophysical and biochemical cytology.

[63]  H. Perkins Histopathologic Technic and Practical Histochemistry , 1954 .

[64]  A. G. Everson Histochemistry: Theoretical and Applied , 1953 .

[65]  D. Demarco,et al.  Histochemical Analysis of Plant Secretory Structures. , 2017, Methods in molecular biology.

[66]  P. Stevens,et al.  Angiosperm Phylogeny Website. Version 13. , 2016 .

[67]  A. Giulietti,et al.  Duodichogamy and sex lability in Sapindaceae: the case of Paullinia weinmanniifolia , 2015, Plant Systematics and Evolution.

[68]  C. R. Marinho,et al.  Scent glands in legume flowers. , 2014, Plant biology.

[69]  Simone de Pádua Teixeira,et al.  A flor: aspectos morfofuncionais e evolutivos , 2014 .

[70]  M. Stpiczyńska,et al.  Comparative structure of the osmophores in the flowers of Stanhopea graveolens Lindley and Cycnoches chlorochilon Klotzsch (Orchidaceae) , 2012 .

[71]  A. Fahn Structure and function of secretory cells , 2000 .

[72]  E. Chacko,et al.  Pollination Biology of Cashew in the Northern Territory of Australia , 1990 .

[73]  K. U. Kramer,et al.  The families and genera of vascular plants. V. 1: Pteridophytes and gymnosperms , 1990 .

[74]  K. Curry Osmophore Development in Stanhopea anfracta and S. pulla (Orchidaceae) , 1988 .

[75]  R. Metcalf,et al.  Plant volatiles as insect attractants , 1987 .

[76]  L. F. Jirón,et al.  Pollination ecology of mango (mangifera indica l.) (anacardiaceae) in the neotropic region , 1985 .

[77]  M. Sedgley,et al.  Insect Pollination of Mango in Northern Australia , 1982 .

[78]  J. Free,et al.  Insect pollination of Anacardium occidentale L., Mangifera indica L., Blighia sapida Koenig and Persea americana Mill. , 1976 .

[79]  D. Johnson The botany, origin, and spread of the cashew Anacardium occidentale L. , 1973 .

[80]  D. Gerlach Botanische Mikrotechnik : eine Einführung , 1969 .

[81]  Plant Microtechnique , 1941, Nature.