A Scientometrics Study of Rough Sets in Three Decades

Rough set theory has been attracting researchers and practitioners over three decades. The theory and its applications experienced unprecedented prosperity especially in the recent ten years. It is essential to explore and review the progress made in the field of rough sets. Mainly based on Web of Science database, we analyze the prolific authors, impact authors, impact groups, and the most impact papers in the past three decades. In addition, we also examine rough set development in the recent five years. One of the goals of this article is to use scientometrics approaches to study three decade research in rough sets. We review the historic growth of rough sets and elaborate on recent development status in this field.

[1]  Hui Li,et al.  Ranking-order case-based reasoning for financial distress prediction , 2008, Knowl. Based Syst..

[2]  Jiye Liang,et al.  Measures for evaluating the decision performance of a decision table in rough set theory , 2008, Inf. Sci..

[3]  Yiyu Yao,et al.  Two views of the theory of rough sets in finite universes , 1996, Int. J. Approx. Reason..

[4]  Z. Pawlak Rough set approach to knowledge-based decision support , 1997 .

[5]  Yiyu Yao,et al.  A Decision Theoretic Framework for Approximating Concepts , 1992, Int. J. Man Mach. Stud..

[6]  Wei-Zhi Wu,et al.  Attribute reduction based on evidence theory in incomplete decision systems , 2008, Inf. Sci..

[7]  Bijan Davvaz,et al.  Soft sets combined with fuzzy sets and rough sets: a tentative approach , 2010, Soft Comput..

[8]  Jerzy W. Grzymala-Busse,et al.  Rough Sets , 1995, Commun. ACM.

[9]  Andrzej Skowron,et al.  Rough sets: Some extensions , 2007, Inf. Sci..

[10]  Qinghua Hu,et al.  Neighborhood classifiers , 2008, Expert Syst. Appl..

[11]  Zdzislaw Pawlak,et al.  Decision Rules, Bayes' Rule and Ruogh Sets , 1999, RSFDGrC.

[12]  Liangsheng Qu,et al.  Fault diagnosis using Rough Sets Theory , 2000 .

[13]  Xiangyang Wang,et al.  Feature selection based on rough sets and particle swarm optimization , 2007, Pattern Recognit. Lett..

[14]  Zdzislaw Pawlak,et al.  Rough sets, decision algorithms and Bayes' theorem , 2002, Eur. J. Oper. Res..

[15]  Yiyu Yao,et al.  Attribute reduction in decision-theoretic rough set models , 2008, Inf. Sci..

[16]  Yiyu Yao,et al.  Decision-Theoretic Rough Set Models , 2007, RSKT.

[17]  Xizhao Wang,et al.  Induction of multiple fuzzy decision trees based on rough set technique , 2008, Inf. Sci..

[18]  Paul P Wang Information Sciences 2007 , 2007 .

[19]  Zbigniew Suraj,et al.  Discovering Patterns of Collaboration in Rough Set Research: Statistical and Graph-Theoretical Approach , 2011, RSKT.

[20]  Jerry R. Thomas,et al.  The 75th Anniversary of Research Quarterly for Exercise and Sport , 2005, Research quarterly for exercise and sport.

[21]  Andrzej Skowron,et al.  New Directions in Rough Sets, Data Mining, and Granular-Soft Computing , 1999, Lecture Notes in Computer Science.

[22]  Jing-Yu Yang,et al.  Dominance-based rough set approach and knowledge reductions in incomplete ordered information system , 2008, Inf. Sci..

[23]  Guilong Liu,et al.  Generalized rough sets over fuzzy lattices , 2008, Inf. Sci..

[24]  Katherine W. McCain,et al.  Visualizing a discipline: an author co-citation analysis of information science, 1972–1995 , 1998 .

[25]  Andrzej Skowron,et al.  Rudiments of rough sets , 2007, Inf. Sci..

[26]  Salvatore Greco,et al.  Rough Membership and Bayesian Confirmation Measures for Parameterized Rough Sets , 2005, RSFDGrC.

[27]  Salvatore Greco,et al.  Rough sets theory for multicriteria decision analysis , 2001, Eur. J. Oper. Res..

[28]  Sadaaki Miyamoto,et al.  Rough Sets and Current Trends in Computing , 2012, Lecture Notes in Computer Science.

[29]  Constantin Zopounidis,et al.  Business failure prediction using rough sets , 1999, Eur. J. Oper. Res..

[30]  Wojciech Ziarko,et al.  Variable Precision Rough Set Model , 1993, J. Comput. Syst. Sci..

[31]  Yiyu Yao,et al.  An Outline of a Theory of Three-Way Decisions , 2012, RSCTC.

[32]  Dag W. Aksnes,et al.  Citation rates and perceptions of scientific contribution , 2006 .

[33]  Witold Pedrycz,et al.  Granular Computing: Perspectives and Challenges , 2013, IEEE Transactions on Cybernetics.

[34]  Y. Yao Information granulation and rough set approximation , 2001 .

[35]  Wojciech Ziarko,et al.  Variable Precision Rough Sets with Asymmetric Bounds , 1993, RSKD.

[36]  Wei-Zhi Wu,et al.  Generalized fuzzy rough sets , 2003, Inf. Sci..

[37]  Qiang Shen,et al.  New Approaches to Fuzzy-Rough Feature Selection , 2009, IEEE Transactions on Fuzzy Systems.

[38]  Henry G. Small,et al.  Tracking and predicting growth areas in science , 2006, Scientometrics.

[39]  William Zhu,et al.  Relationship between generalized rough sets based on binary relation and covering , 2009, Inf. Sci..

[40]  Marzena Kryszkiewicz,et al.  Rules in Incomplete Information Systems , 1999, Inf. Sci..

[41]  Yiyu Yao,et al.  Relational Interpretations of Neigborhood Operators and Rough Set Approximation Operators , 1998, Inf. Sci..

[42]  JingTao Yao A Ten-year Review of Granular Computing , 2007 .

[43]  Guoyin Wang,et al.  Rough Sets, Fuzzy Sets, Data Mining, and Granular Computing , 2013, Lecture Notes in Computer Science.

[44]  D. Dubois,et al.  ROUGH FUZZY SETS AND FUZZY ROUGH SETS , 1990 .

[45]  K. Thangavel,et al.  Dimensionality reduction based on rough set theory: A review , 2009, Appl. Soft Comput..

[46]  Renpu Li,et al.  Mining classification rules using rough sets and neural networks , 2004, Eur. J. Oper. Res..

[47]  Didier Dubois,et al.  Oppositions in Rough Set Theory , 2012, RSKT.

[48]  Daniel Vanderpooten,et al.  A Generalized Definition of Rough Approximations Based on Similarity , 2000, IEEE Trans. Knowl. Data Eng..

[49]  E. Garfield,et al.  Of Nobel class: A citation perspective on high impact research authors , 1992, Theoretical medicine.

[50]  Jingtao Yao,et al.  Game-Theoretic Rough Sets , 2011, Fundam. Informaticae.

[51]  Witold Pedrycz,et al.  Positive approximation: An accelerator for attribute reduction in rough set theory , 2010, Artif. Intell..

[52]  Salvatore Greco,et al.  Parameterized rough set model using rough membership and Bayesian confirmation measures , 2008, Int. J. Approx. Reason..

[53]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[54]  Judit Bar-Ilan,et al.  Which h-index? — A comparison of WoS, Scopus and Google Scholar , 2008, Scientometrics.

[55]  Ville Salo,et al.  Constructions with Countable Subshifts of Finite Type , 2013, Fundam. Informaticae.

[56]  Zdzislaw Pawlak,et al.  Rough Set Theory and its Applications to Data Analysis , 1998, Cybern. Syst..

[57]  Zhi Xiao,et al.  A combined forecasting approach based on fuzzy soft sets , 2009 .

[58]  Andrzej Skowron,et al.  Rough sets and Boolean reasoning , 2007, Inf. Sci..

[59]  Young Bae Jun,et al.  Soft sets and soft rough sets , 2011, Inf. Sci..

[60]  Sushmita Mitra,et al.  Neuro-fuzzy rule generation: survey in soft computing framework , 2000, IEEE Trans. Neural Networks Learn. Syst..

[61]  Shusaku Tsumoto,et al.  Foundations of Intelligent Systems, 15th International Symposium, ISMIS 2005, Saratoga Springs, NY, USA, May 25-28, 2005, Proceedings , 2005, ISMIS.

[62]  Yiyu Yao,et al.  Probabilistic rough set approximations , 2008, Int. J. Approx. Reason..

[63]  J. E. Hirsch,et al.  An index to quantify an individual's scientific research output , 2005, Proc. Natl. Acad. Sci. USA.

[64]  Marzena Kryszkiewicz,et al.  Rough Set Approach to Incomplete Information Systems , 1998, Inf. Sci..

[65]  Yiyu Yao,et al.  Subsystem Based Generalizations of Rough Set Approximations , 2005, ISMIS.

[66]  Andrzej Skowron,et al.  Rough mereology: A new paradigm for approximate reasoning , 1996, Int. J. Approx. Reason..

[67]  Yiyu Yao,et al.  Constructive and Algebraic Methods of the Theory of Rough Sets , 1998, Inf. Sci..

[68]  Andrzej Skowron,et al.  Rough set methods in feature selection and recognition , 2003, Pattern Recognit. Lett..

[69]  Byeong Seok Ahn,et al.  The integrated methodology of rough set theory and artificial neural network for business failure prediction , 2000 .

[70]  Young Bae Jun,et al.  Soft semirings , 2008, Comput. Math. Appl..

[71]  Yiyu Yao,et al.  Covering based rough set approximations , 2012, Inf. Sci..

[72]  Qinghua Hu,et al.  Neighborhood rough set based heterogeneous feature subset selection , 2008, Inf. Sci..

[73]  Steffen Bickel,et al.  Unsupervised prediction of citation influences , 2007, ICML '07.

[74]  Yiyu Yao,et al.  Three-way decisions with probabilistic rough sets , 2010, Inf. Sci..

[75]  Dominik Slezak,et al.  The investigation of the Bayesian rough set model , 2005, Int. J. Approx. Reason..

[76]  Joseph Sarkis,et al.  Integrating sustainability into supplier selection with grey system and rough set methodologies , 2010 .

[77]  Jingtao Yao,et al.  Recent developments in granular computing: A bibliometrics study , 2008, 2008 IEEE International Conference on Granular Computing.

[78]  Yiyu Yao,et al.  Three-Way Decision: An Interpretation of Rules in Rough Set Theory , 2009, RSKT.