Aerodynamic Shape Optimization of an Adaptive Morphing Trailing-Edge Wing

Adaptive morphing trailing-edge wings have the potential to reduce the fuel burn of transport aircraft. However, to take full advantage of this technology and to quantify its benefits, design studies are required. To address this need, the aerodynamic performance benefits of a morphing trailing-edge wing are quantified using aerodynamic design optimization. The aerodynamic model solves the Reynolds-averaged Navier–Stokes equations with a Spalart–Allmaras turbulence model. A gradient-based optimization algorithm is used in conjunction with an adjoint method that computes the required derivatives. The baseline geometry is optimized using a multipoint formulation and 192 shape design variables. The average drag coefficient is minimized subject to lift, pitching moment, geometric constraints, and a 2.5g maneuver bending moment constraint. The trailing edge of the wing is optimized based on the multipoint optimized wing. The trailing-edge morphing is parameterized using 90 design variables that are optimized i...

[1]  J. Martins,et al.  Buffet-Onset Constraint Formulation for Aerodynamic Shape Optimization , 2017 .

[2]  Shaker A. Meguid,et al.  Shape morphing of aircraft wing: Status and challenges , 2010 .

[3]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[4]  John C. Vassberg,et al.  Development of a Common Research Model for Applied CFD Validation Studies , 2008 .

[5]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[6]  Graeme J. Kennedy,et al.  Scalable Parallel Approach for High-Fidelity Steady-State Aeroelastic Analysis and Adjoint Derivative Computations , 2014 .

[7]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[8]  Egbert Torenbeek,et al.  The New Textbook ”Advanced Aircraft Design – Conceptual Design, Technology and Optimization of Subsonic Civil Airplanes“ , 2013 .

[9]  Joaquim R. R. A. Martins,et al.  Multimission Aircraft Fuel-Burn Minimization via Multipoint Aerostructural Optimization , 2015 .

[10]  Pedro F. Albuquerque,et al.  Mission-Based Multidisciplinary Aircraft Design Optimization Methodology Tailored for Adaptive Technologies , 2017 .

[11]  Joaquim R. R. A. Martins,et al.  RANS-based aerodynamic shape optimization investigations of the common research modelwing , 2014 .

[12]  Joaquim R. R. A. Martins,et al.  Aerodynamic Shape Optimization of the CRM Configuration Including Buffet-Onset Conditions , 2016 .

[13]  J. Martins,et al.  Multipoint Aerodynamic Shape Optimization Investigations of the Common Research Model Wing , 2015 .

[14]  Nestor V. Queipo,et al.  Reliability-based and deterministic design optimization of a FSAE brake pedal: a risk allocation analysis , 2017 .

[15]  Manfred Morari,et al.  Aero-Structural Optimization of Morphing Airfoils for Adaptive Wings , 2011 .

[16]  Joaquim R. R. A. Martins,et al.  Aerostructural optimization of the common research model configuration , 2014 .

[17]  Joaquim R. R. A. Martins,et al.  Aerostructural design optimization of a continuous morphing trailing edge aircraft for improved mission performance , 2016 .

[18]  Nhan T. Nguyen,et al.  Aeroestructural Design Optimization of a Subsonic Wing with Continuous Morphing Trailing Edge , 2017 .

[19]  Joaquim R. R. A. Martins,et al.  Aerostructural Design Optimization of an Adaptive Morphing Trailing Edge Wing , 2015 .

[20]  John C. Vassberg,et al.  Influence of Shape Parameterization on Aerodynamic Shape Optimization , 2014 .

[21]  Carl P. Tilmann,et al.  Design and application of compliant mechanisms for morphing aircraft structures , 2003, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[22]  P. Roache Verification of Codes and Calculations , 1998 .

[23]  J. Alonso,et al.  ADjoint: An Approach for the Rapid Development of Discrete Adjoint Solvers , 2006 .

[24]  Lauren Zientarski,et al.  Variable Camber Compliant Wing - Design , 2015 .

[25]  J. Martins,et al.  Benchmarking Optimization Algorithms for Wing Aerodynamic Design Optimization , 2014 .

[26]  Joaquim R. R. A. Martins,et al.  Multipoint High-Fidelity Aerostructural Optimization of a Transport Aircraft Configuration , 2014 .

[27]  Michael J. Aftosmis,et al.  Optimization of Flexible Wings with Distributed Flaps at Off-Design Conditions , 2016 .

[28]  Georgi Kalitzin,et al.  Unsteady turbomachinery computations using massively parallel platforms , 2006 .

[29]  Cody A. Paige,et al.  Automatic Differentiation Adjoint of the Reynolds-Averaged Navier-Stokes Equations with a Turbulence Model , 2013 .

[30]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[31]  John C. Vassberg,et al.  A Unified Baseline Grid about the Common Research Model Wing-Body for the Fifth AIAA CFD Drag Prediction Workshop , 2011 .

[32]  Joaquim R. R. A. Martins,et al.  pyOpt: a Python-based object-oriented framework for nonlinear constrained optimization , 2011, Structural and Multidisciplinary Optimization.

[33]  Hans Petter Langtangen,et al.  Modern Software Tools for Scientific Computing , 1997, Birkhäuser Boston.

[34]  Marianna Braza,et al.  Dynamics of a hybrid morphing wing with active open loop vibrating trailing edge by Time-Resolved PIV and force measures , 2017 .

[35]  Lauren Zientarski,et al.  Variable Camber Compliant Wing - Wind Tunnel Testing , 2015 .

[36]  Jacques Periaux,et al.  Robust aerodynamic design optimisation of morphing aerofoil/wing using distributed moga , 2012 .

[37]  Joaquim R. R. A. Martins,et al.  A CAD-Free Approach to High-Fidelity Aerostructural Optimization , 2010 .

[38]  Joaquim R. R. A. Martins,et al.  Strategies for solving high-fidelity aerodynamic shape optimization problems , 2014 .

[39]  Joaquim R. R. A. Martins,et al.  Aerodynamic Shape Optimization of a Blended-Wing-Body Aircraft , 2013 .

[40]  Johannes Scheller,et al.  Implementation of a Hybrid Electro-Active Actuated Morphing Wing in Wind Tunnel , 2017 .

[41]  Joaquim R. R. A. Martins,et al.  Aerodynamic Design Optimization Studies of a Blended-Wing-Body Aircraft , 2014 .

[42]  Joaquim R. R. A. Martins,et al.  Aeroservoelastic Design Optimization of a Flexible Wing , 2012 .

[43]  Joaquim R. R. A. Martins,et al.  Aerodynamic Shape Optimization Investigations of the Common Research Model Wing Benchmark , 2015 .

[44]  Egbert Torenbeek,et al.  Advanced Aircraft Design: Conceptual Design, Analysis and Optimization of Subsonic Civil Airplanes , 2013 .

[45]  Gregory F Ervin,et al.  Mission Adaptive Compliant Wing – Design , Fabrication and Flight Test , 2009 .