Multilayer microwave integrated quantum circuits for scalable quantum computing

As experimental quantum information processing (QIP) rapidly advances, an emerging challenge is to design a scalable architecture that combines various quantum elements into a complex device without compromising their performance. In particular, superconducting quantum circuits have successfully demonstrated many of the requirements for quantum computing, including coherence levels that approach the thresholds for scaling. However, it remains challenging to couple a large number of circuit components through controllable channels while suppressing any other interactions. We propose a hardware platform intended to address these challenges, which combines the advantages of integrated circuit fabrication and long coherence times achievable in three-dimensional circuit quantum electrodynamics (3D cQED). This multilayer microwave integrated quantum circuit (MMIQC) platform provides a path toward the realization of increasingly complex superconducting devices in pursuit of a scalable quantum computer.

[1]  Linda P. B. Katehi Micromachined Antennas for Microwave MM-Wave Applications , 1998 .

[2]  Y. Salathe,et al.  Deterministic quantum teleportation with feed-forward in a solid state system , 2013, Nature.

[3]  J. R. Reid,et al.  Micromachined rectangular-coaxial transmission lines , 2006, IEEE Transactions on Microwave Theory and Techniques.

[4]  Luigi Frunzio,et al.  Surface participation and dielectric loss in superconducting qubits , 2015, 1509.01854.

[5]  J. Zmuidzinas,et al.  Crosstalk Reduction for Superconducting Microwave Resonator Arrays , 2012, IEEE Transactions on Microwave Theory and Techniques.

[6]  John M. Martinis,et al.  Logic gates at the surface code threshold: Superconducting qubits poised for fault-tolerant quantum computing , 2014 .

[7]  L. DiCarlo,et al.  Mitigating information leakage in a crowded spectrum of weakly anharmonic qubits , 2014, 1405.0450.

[8]  R. J. Schoelkopf,et al.  Improving the quality factor of microwave compact resonators by optimizing their geometrical parameters , 2011, 1204.0742.

[9]  Erik Lucero,et al.  Wirebond crosstalk and cavity modes in large chip mounts for superconducting qubits , 2010, 1011.4982.

[10]  R. Barends,et al.  Superconducting quantum circuits at the surface code threshold for fault tolerance , 2014, Nature.

[11]  Ignacio Llamas Garro,et al.  Micromachined microwave filters , 2003 .

[12]  D. Gottesman An Introduction to Quantum Error Correction and Fault-Tolerant Quantum Computation , 2009, 0904.2557.

[13]  Dominic J. Benford,et al.  Enabling large focal plane arrays through mosaic hybridization , 2012, Other Conferences.

[14]  Luigi Frunzio,et al.  2.5D circuit quantum electrodynamics , 2015 .

[15]  Peter A. R. Ade,et al.  Scaling the summit of the submillimetre: instrument performance of SCUBA-2 , 2012, Other Conferences.

[16]  Gabriel M. Rebeiz RF MEMS: Theory, Design and Technology , 2003 .

[17]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[18]  M. H. Devoret,et al.  Planar Superconducting Whispering Gallery Mode Resonators , 2013, 1308.1743.

[19]  Barrington. Moore The Outlook , 1956 .

[20]  S. Girvin,et al.  Wiring up quantum systems , 2008, Nature.

[21]  Mark W. Johnson,et al.  Architectural Considerations in the Design of a Superconducting Quantum Annealing Processor , 2014, IEEE Transactions on Applied Superconductivity.

[22]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[23]  Barry C. Sanders,et al.  Photon-Mediated Interactions Between Distant Artificial Atoms , 2013, Science.

[24]  Gabriel M. Rebeiz,et al.  Conductor-loss limited stripline resonator and filters , 1996 .

[25]  Lee Harle,et al.  Microwave micromachined cavity filters. , 2003 .

[26]  Archil Avaliani,et al.  Quantum Computers , 2004, ArXiv.

[27]  Pieter Kok,et al.  Quantum computers: Definition and implementations , 2011 .

[28]  Erik Lucero,et al.  Surface loss simulations of superconducting coplanar waveguide resonators , 2011, 1107.4698.

[29]  Linda P. B. Katehi High Efficiency Micromachined Antennas: Micromachined Antennas for Microwave and Mm-Wave Applications , 1997 .

[30]  Alexandre Blais,et al.  Quantum information processing with circuit quantum electrodynamics , 2007 .

[31]  Jonas Zmuidzinas,et al.  Superconducting Microresonators: Physics and Applications , 2012 .

[32]  Pedram Khalili Amiri,et al.  Quantum computers , 2003 .

[33]  L. DiCarlo,et al.  Reducing intrinsic loss in superconducting resonators by surface treatment and deep etching of silicon substrates , 2015, 1502.04082.

[34]  Gabriel M. Rebeiz,et al.  Low loss micromachined filters for millimeter-wave telecommunication systems , 1998, 1998 IEEE MTT-S International Microwave Symposium Digest (Cat. No.98CH36192).

[35]  Stavros Iezekiel,et al.  DESIGN OF A NON-CONTACT VERTICAL TRANSITION FOR A 3D MM-WAVE MULTI-CHIP MODULE BASED ON SHIELDED MEMBRANE SUPPORTED INTERCONNECTS , 2011 .

[36]  Pierre Blondy,et al.  Microwave and millimeter-wave high- Q micromachined resonators , 1999 .

[37]  Zijun Chen,et al.  Fabrication and characterization of aluminum airbridges for superconducting microwave circuits , 2013, 1310.2325.

[38]  G.E. Moore,et al.  Cramming More Components Onto Integrated Circuits , 1998, Proceedings of the IEEE.

[39]  Pierre Blondy,et al.  Low loss micromachined filters for millimeter-wave telecommunication systems , 1998, IMS 1998.

[40]  S. Girvin,et al.  Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. , 2011, Physical review letters.

[41]  R. Schoelkopf,et al.  Superconducting Circuits for Quantum Information: An Outlook , 2013, Science.

[42]  Todd A. Brun,et al.  Quantum Computing , 2011, Computer Science, The Hardware, Software and Heart of It.

[43]  Luigi Frunzio,et al.  Realization of three-qubit quantum error correction with superconducting circuits , 2011, Nature.

[44]  Daniel Sank,et al.  Fast accurate state measurement with superconducting qubits. , 2014, Physical review letters.

[45]  Jong-Gwan Yook,et al.  Microtechnology in the development of three-dimensional circuits , 1998 .

[46]  Linda P. B. Katehi,et al.  3-D integration of RF circuits using Si micromachining , 2001 .

[47]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[48]  R. J. Schoelkopf,et al.  Reaching 10 ms single photon lifetimes for superconducting aluminum cavities , 2013, 1302.4408.

[49]  M. Mariantoni,et al.  Surface codes: Towards practical large-scale quantum computation , 2012, 1208.0928.

[50]  R. J. Schoelkopf,et al.  Demonstration of superconducting micromachined cavities , 2015, 1509.01119.

[51]  K. B. Whaley,et al.  Supplementary Information for " Observation of measurement-induced entanglement and quantum trajectories of remote superconducting qubits " , 2014 .

[52]  J. Papapolymerou,et al.  A micromachined high-Q X-band resonator , 1997 .