Bounding p-Brauer characters in finite groups with two conjugacy classes of p-elements

Let k(B0) and l(B0) respectively denote the number of ordinary and p-Brauer irreducible characters in the principal block B0 of a finite group G. We prove that, if k(B0)− l(B0) = 1, then l(B0) ≥ p− 1 or else p = 11 and l(B0) = 9. This follows from a more general result that for every finite group G in which all non-trivial p-elements are conjugate, l(B0) ≥ p− 1 or else p = 11 and G/Op′(G) ∼= C 11 ⋊ SL(2, 5). These results are useful in the study of principal blocks with a few characters. We propose that, in every finite group G of order divisible by p, the number of irreducible Brauer characters in the principal p-block of G is always at least 2 √ p− 1+ 1− kp(G), where kp(G) is the number of conjugacy classes of p-elements of G. This indeed is a consequence of the celebrated Alperin weight conjecture and known results on bounding the number of p-regular classes in finite groups.

[1]  R. Kessar,et al.  Lusztig induction and $\ell$-blocks of finite reductive groups , 2015, 1506.02469.

[2]  Abelian Sylow subgroups in a finite group, II , 2014 .

[3]  Noelia Rizo,et al.  Principal blocks with 5 irreducible characters , 2020, 2010.15422.

[4]  G. Navarro,et al.  Finite groups with two conjugacy classes of p‐elements and related questions for p‐blocks , 2014 .

[5]  Hans Zassenhaus,et al.  Über endliche Fastkörper , 1935 .

[6]  N. Vavilov REPRESENTATIONS OF FINITE GROUPS OF LIE TYPE (London Mathematical Society Student Texts 21) , 1995 .

[7]  Meinolf Geck,et al.  Finite groups of Lie type , 1985 .

[8]  Martin W. Liebeck,et al.  The Affine Permutation Groups of Rank Three , 1987 .

[10]  E. Dade Blocks With Cyclic Defect Groups , 1966 .

[11]  Gunter Malle,et al.  Die unipotenten charaktere von 2F4(q2) , 1990 .

[12]  Gunter Malle,et al.  Linear Algebraic Groups and Finite Groups of Lie Type , 2011 .

[13]  M. Geck Basic Sets of Brauer Characters of Finite Groups of Lie Type II , 1993 .

[14]  B. Huppert Endliche Gruppen I , 1967 .

[15]  Masato Sawabe,et al.  On the Principal Blocks of Finite Groups with Abelian Sylow p-Subgroups , 2001 .

[16]  F. Himstedt On the Decomposition Numbers of the Ree Groups 2F4(q^2) in Non-Defining Characteristic , 2009, 0910.1991.

[17]  D. Passman p-solvable doubly transitive permutation groups , 1968 .

[18]  Roger W. Carter,et al.  Finite groups of Lie type: Conjugacy classes and complex characters , 1985 .

[19]  Gunter Malle,et al.  Generic Blocks of Finite Reductive Groups Generic Blocks of Finite Reductive Groups , 1992 .

[20]  Charles W. Curtis,et al.  Representations of finite groups of Lie type , 1979 .

[21]  Gabriel Navarro,et al.  Characters and blocks of finite groups , 1998 .

[22]  Nguyen Ngoc Hung,et al.  On H\'{e}thelyi-K\"{u}lshammer's conjecture for principal blocks , 2021 .

[23]  M. Geck Irreducible brauer characters of the 3-dimensional special unitary groups in non-defining characteristic ∗ , 1990 .

[24]  G. Malle On the inductive Alperin–McKay and Alperin weight conjecture for groups with abelian Sylow subgroups , 2014 .

[25]  Shigeo Koshitani,et al.  Broué's Conjecture Holds for Principal 3-Blocks with Elementary Abelian Defect Group of Order 9☆ , 2002 .

[26]  Dan Segal,et al.  Finite Group Theory , 2003 .

[27]  G. Malle Extensions of unipotent characters and the inductive McKay condition , 2008 .

[28]  Naoko Kunugi Morita Equivalent 3‐Blocks of the 3‐Dimensional Projective Special Linear Groups , 2000 .

[29]  P. Landrock On the number of irreducible characters in a 2-block☆ , 1981 .

[30]  M. Cabanes,et al.  On unipotent blocks and their ordinary characters , 1994 .

[31]  Benjamin Sambale,et al.  Broué's isotypy conjecture for the sporadic groups and their covers and automorphism groups , 2015, Int. J. Algebra Comput..

[32]  Gerhard Hiss,et al.  On the decomposition numbers of G2(q) , 1989 .

[33]  M. Benard Schur indices and splitting fields of the unitary reflection groups , 1976 .

[34]  Benjamin Sambale,et al.  Blocks of Finite Groups and Their Invariants , 2014 .

[35]  Benjamin Sambale,et al.  Blocks with transitive fusion systems , 2014, 1410.5705.

[36]  On the number of $p'$-degree characters in a finite group , 2014, 1412.7613.

[37]  H. Weyl Permutation Groups , 2022 .

[38]  G. Robinson,et al.  On the number of simple modules in a block of a finite group , 2015, 1512.05991.

[39]  R. Kessar,et al.  Quasi-isolated blocks and Brauer’s height zero conjecture , 2011, 1112.2642.

[40]  J. Conway,et al.  ATLAS of Finite Groups , 1985 .