Novel sulfonated poly (ether ether ketone)/silica coated carbon nanotubes high-performance composite membranes for direct methanol fuel cell

The major risk of using carbon nanotubes (CNTs) to modify proton exchange membranes (PEMs) in fuel cells is possible short-circuiting due to the excellent electrical conductivity of CNTs. In this article, silica-coated CNTs (SiO2@CNTs) were successfully prepared by a simple sol–gel process and then used as a new additive in the preparation of sulfonated poly (ether ether ketone) (SPEEK)-based composite membranes. The insulated and hydrophilic silica coated on the surface of CNTs not only eliminated the risk of short-circuiting, but also enhanced the interfacial interaction between CNTs and SPEEK, and hence promoted the homogeneous dispersion of CNTs in the SPEEK matrix. Moreover, compared to the methanol permeability of the pure SPEEK membrane (3.42 × 10−7 cm2 s−1), the SPEEK/SiO2@CNT composite membrane with a SiO2@CNT loading of 5 wt% exhibits almost one order of magnitude decrease of methanol crossover, while the proton conductivity still remained above 10−2 S cm−1 at room temperature. The obtained results expose the possibility of SPEEK/SiO2@CNT membranes to be served as high-performance PEMs in direct methanol fuel cells. Copyright © 2015 John Wiley & Sons, Ltd.

[1]  Y. Lee,et al.  Polybenzimidazole membranes modified with polyelectrolyte-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells , 2011 .

[2]  P. Kuo,et al.  Poly(oxyalkylene)diamine-Functionalized Carbon Nanotube/Perfluorosulfonated Polymer Composites: Synthesis, Water State, and Conductivity , 2008 .

[3]  G. He,et al.  Constructing facile proton-conduction pathway within sulfonated poly(ether ether ketone) membrane by incorporating poly(phosphonic acid)/silica nanotubes , 2014 .

[4]  V. Antonucci,et al.  Performance analysis of polymer electrolyte membranes for direct methanol fuel cells , 2013 .

[5]  R. Kannan,et al.  Improved performance of phosphonated carbon nanotube–polybenzimidazole composite membranes in proton exchange membrane fuel cells , 2011 .

[6]  R. Kannan,et al.  Artificially designed membranes using phosphonated multiwall carbon nanotube-polybenzimidazole composites for polymer electrolyte fuel cells , 2010 .

[7]  Michael D. Guiver,et al.  Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications , 2000 .

[8]  B. P. Tripathi,et al.  Organic―inorganic nanocomposite polymer electrolyte membranes for fuel cell applications , 2011 .

[9]  R. Kannan,et al.  Domain size manipulation of perflouorinated polymer electrolytes by sulfonic acid-functionalized MWCNTs to enhance fuel cell performance. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[10]  T. Xu,et al.  PREPARATION OF SPEEK AND SPEEK/CHITOSAN COMPOSITE PROTON-EXCHANGE MEMBRANES FOR APPLICATION IN DIRECT METHANOL FUEL CELLS: PREPARATION OF SPEEK AND SPEEK/CHITOSAN COMPOSITE PROTON-EXCHANGE MEMBRANES FOR APPLICATION IN DIRECT METHANOL FUEL CELLS , 2010 .

[11]  Alessandro Lenci,et al.  SPEEK-TiO2 nanocomposite hybrid proton conductive membranes via in situ mixed sol–gel process , 2007 .

[12]  B. Peppley,et al.  Zirconium phosphate as the proton conducting material in direct hydrocarbon polymer electrolyte membrane fuel cells operating above the boiling point of water , 2010 .

[13]  D. Seung,et al.  Functionalized carbon nanotube-poly(arylene sulfone) composite membranes for direct methanol fuel cells with enhanced performance , 2008 .

[14]  C. Detrembleur,et al.  Beneficial effect of carbon nanotubes on the performances of Nafion membranes in fuel cell applications , 2007 .

[15]  Siti Kartom Kamarudin,et al.  Overview of hybrid membranes for direct-methanol fuel-cell applications , 2010 .

[16]  Y. Elabd,et al.  Polymer electrolyte membranes for the direct methanol fuel cell: A review , 2006 .

[17]  Juin-Yih Lai,et al.  Preparation and applications of Nafion-functionalized multiwalled carbon nanotubes for proton exchange membrane fuel cells , 2010 .

[18]  Huarong Nie,et al.  Sulfonated carbon nanotubes/sulfonated poly(ether sulfone ether ketone ketone) composites for polymer electrolyte membranes , 2011 .

[19]  Y. Shu,et al.  Effect of sulfonic group on solubility parameters and solubility behavior of poly(2,6-dimethyl-1,4-phenylene oxide) , 2007 .

[20]  D. Loy,et al.  Proton conductivity of Nafion/ex situ Stöber silica nanocomposite membranes as a function of silica particle size and temperature , 2014, Journal of Materials Science.

[21]  H. Lezec,et al.  Electrical conductivity of individual carbon nanotubes , 1996, Nature.

[22]  Yiu-Wing Mai,et al.  Dispersion and alignment of carbon nanotubes in polymer matrix: A review , 2005 .

[23]  F. Chang,et al.  Characteristics of high-water-uptake activated carbon/Nafion hybrid membranes for proton exchange membrane fuel cells , 2013 .

[24]  A. Durán,et al.  Synthesis and characterisation of proton conducting styrene-co-methacrylate–silica sol–gel membranes containing tungstophosphoric acid , 2005 .

[25]  S. Rowshanzamir,et al.  Review of the proton exchange membranes for fuel cell applications , 2010 .

[26]  Y. Mai,et al.  A facile method to fabricate silica-coated carbon nanotubes and silica nanotubes from carbon nanotubes templates , 2009 .

[27]  Ibrahim Dincer,et al.  A review on methanol crossover in direct methanol fuel cells: challenges and achievements , 2011 .

[28]  Yiu-Wing Mai,et al.  Improving thermal conductivity while retaining high electrical resistivity of epoxy composites by incorporating silica-coated multi-walled carbon nanotubes , 2011 .

[29]  P. Renaud,et al.  Superacid-doped polybenzimidazole-decorated carbon nanotubes: a novel high-performance proton exchange nanocomposite membrane. , 2013, Nanoscale.

[30]  Y. Shu,et al.  Sulfonated poly(ether sulfone)/phosphotungstic acid/attapulgite composite membranes for direct methanol fuel cells , 2012 .

[31]  G. Jin,et al.  Multivariable fuzzy decoupling control of the polymer electromagnetism dynamic extrusion process , 2010 .

[32]  L. Garvie Extraterrestrial carbon nanospheres , 2006 .

[33]  P. P. Kundu,et al.  Utilization of Conducting Polymers in Fabricating Polymer Electrolyte Membranes for Application in Direct Methanol Fuel Cells , 2014 .

[34]  S. Holdcroft,et al.  Transport properties of composite membranes containing silicon dioxide and Nafion , 2008 .

[35]  Y. Shu,et al.  Sulfonated poly(ether sulfone) (SPES)/boron phosphate (BPO4) composite membranes for high-temperature proton-exchange membrane fuel cells , 2009 .

[36]  B. Yi,et al.  Carbon nanotubes reinforced nafion composite membrane for fuel cell applications , 2006 .

[37]  Jooheon Kim,et al.  Crosslinked sulfonated poly(vinyl alcohol)/sulfonated multi-walled carbon nanotubes nanocomposite me , 2011 .

[38]  R. Kannan,et al.  Polymer electrolyte fuel cells using nafion-based composite membranes with functionalized carbon nanotubes. , 2008, Angewandte Chemie.

[39]  Y. Shu,et al.  Sulfonated Poly(ether sulfone)/Silica Composite Membranes for Direct Methanol Fuel Cells , 2009 .

[40]  A. Basile,et al.  Sulfonated PEEK-based polymers in PEMFC and DMFC applications: A review , 2012 .