Correction of multiple-blinking artifacts in photoactivated localization microscopy

[1]  Brian L Ross,et al.  A pairwise distance distribution correction (DDC) algorithm to eliminate blinking-caused artifacts in SMLM , 2021, Nature Methods.

[2]  Ute Hahn,et al.  Semiparametric point process modeling of blinking artifacts in PALM , 2021, The Annals of Applied Statistics.

[3]  Jonas Ries,et al.  SMAP – A Modular Superresolution Microscopy Analysis Platform for SMLM Data , 2020, bioRxiv.

[4]  M. Unser,et al.  Virtual-SMLM, a virtual environment for real-time interactive SMLM acquisition , 2020, bioRxiv.

[5]  R. Sablatnig,et al.  Verifying molecular clusters by 2-color localization microscopy and significance testing , 2019, Scientific Reports.

[6]  Ulf Matti,et al.  Nuclear pores as versatile reference standards for quantitative superresolution microscopy , 2019, Nature Methods.

[7]  G. Schütz,et al.  Unscrambling fluorophore blinking for comprehensive cluster detection via photoactivated localization microscopy , 2019, Nature Communications.

[8]  M. Brameshuber,et al.  The TCR is randomly distributed on the plasma membrane of resting antigen-experienced T cells , 2018, Nature Immunology.

[9]  M. Reches,et al.  Nanoscale kinetic segregation of TCR and CD45 in engaged microvilli facilitates early T cell activation , 2018, Nature Communications.

[10]  Patrick Rubin-Delanchy,et al.  A Bayesian cluster analysis method for single-molecule localization microscopy data , 2016, Nature Protocols.

[11]  Gerhard J Schütz,et al.  Varying label density allows artifact-free analysis of membrane-protein nanoclusters , 2016, Nature Methods.

[12]  Andrew Mugler,et al.  Cooperative Clustering Digitizes Biochemical Signaling and Enhances its Fidelity. , 2016, Biophysical journal.

[13]  David J. Williamson,et al.  Bayesian cluster identification in single-molecule localization microscopy data , 2015, Nature Methods.

[14]  Roland Eils,et al.  One, two or three? Probing the stoichiometry of membrane proteins by single-molecule localization microscopy , 2015, Scientific Reports.

[15]  N. Coussens,et al.  The Linker for Activation of T Cells (LAT) Signaling Hub: From Signaling Complexes to Microclusters* , 2015, The Journal of Biological Chemistry.

[16]  Daniel Choquet,et al.  SR-Tesseler: a method to segment and quantify localization-based super-resolution microscopy data , 2015, Nature Methods.

[17]  Jayakrishnan Unnikrishnan,et al.  Accounting for Limited Detection Efficiency and Localization Precision in Cluster Analysis in Single Molecule Localization Microscopy , 2015, PloS one.

[18]  Guy M. Hagen,et al.  ThunderSTORM: a comprehensive ImageJ plug-in for PALM and STORM data analysis and super-resolution imaging , 2014, Bioinform..

[19]  M. Lakadamyali,et al.  Single-molecule evaluation of fluorescent protein photoactivation efficiency using an in vivo nanotemplate , 2014, Nature Methods.

[20]  Carla Coltharp,et al.  Accurate Construction of Photoactivated Localization Microscopy (PALM) Images for Quantitative Measurements , 2012, PloS one.

[21]  Katharina Gaus,et al.  Conformational states of the kinase Lck regulate clustering in early T cell signaling , 2012, Nature Immunology.

[22]  C. Bustamante,et al.  Counting single photoactivatable fluorescent molecules by photoactivated localization microscopy (PALM) , 2012, Proceedings of the National Academy of Sciences.

[23]  Prabuddha Sengupta,et al.  Probing protein heterogeneity in the plasma membrane using PALM and pair correlation analysis , 2011, Nature Methods.

[24]  P. Annibale,et al.  Quantitative Photo Activated Localization Microscopy: Unraveling the Effects of Photoblinking , 2011, PloS one.

[25]  Astrid Magenau,et al.  Pre-existing clusters of the adaptor Lat do not participate in early T cell signaling events , 2011, Nature Immunology.

[26]  P. Annibale,et al.  Identification of clustering artifacts in photoactivated localization microscopy , 2011, Nature Methods.

[27]  Benjamin B. Machta,et al.  Correlation Functions Quantify Super-Resolution Images and Estimate Apparent Clustering Due to Over-Counting , 2011, PloS one.

[28]  Mark M Davis,et al.  TCR and Lat are expressed on separate protein islands on T cell membranes and concatenate during activation , 2010, Nature Immunology.

[29]  Mark A. A. Neil,et al.  Dynamics of Subsynaptic Vesicles and Surface Microclusters at the Immunological Synapse , 2010, Science Signaling.

[30]  P. Annibale,et al.  Photoactivatable Fluorescent Protein mEos2 Displays Repeated Photoactivation after a Long-Lived Dark State in the Red Photoconverted Form , 2010 .

[31]  J. Lippincott-Schwartz,et al.  Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.

[32]  Rajat Varma,et al.  T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. , 2006, Immunity.

[33]  C. Robert,et al.  Computational and Inferential Difficulties with Mixture Posterior Distributions , 2000 .

[34]  S. Bromley,et al.  The immunological synapse: a molecular machine controlling T cell activation. , 1999, Science.

[35]  Peter J. Diggle,et al.  On parameter estimation and goodness-of-fit testing for spatial point patterns , 1979 .

[36]  R. M. Cormack,et al.  A Review of Classification , 1971 .

[37]  J. H. Ward Hierarchical Grouping to Optimize an Objective Function , 1963 .

[38]  Hilde van der Togt,et al.  Publisher's Note , 2003, J. Netw. Comput. Appl..