Computer-aided, case-based diagnosis of mammographic regions of interest containing microcalcifications.

[1]  Robert M. Nishikawa Design of a common database for research in mammogram image analysis , 1993, Electronic Imaging.

[2]  Jack Sklansky,et al.  A visual neural classifier , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[3]  Maryellen L. Giger,et al.  Computer Vision and Decision Support , 1997 .

[4]  N A Obuchowski,et al.  Film-screen versus digitized mammography: assessment of clinical equivalence. , 1999, AJR. American journal of roentgenology.

[5]  R. Warren,et al.  Mammography screening: an incremental cost effectiveness analysis of double versus single reading of mammograms , 1996, BMJ.

[6]  R. Schopf,et al.  Treatment of toenail tinea infection , 1996 .

[7]  J. Sklansky,et al.  A visual multi-expert neural classifier , 1997, Proceedings of International Conference on Neural Networks (ICNN'97).

[8]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[9]  Dr. med Marton Lanyi Diagnosis and Differential Diagnosis of Breast Calcifications , 1987, Springer Berlin Heidelberg.

[10]  Jack Sklansky,et al.  Automatic detection of microcalcifications in digital mammography , 1998, Medical Imaging.

[11]  Vijay V. Raghavan,et al.  Content-Based Image Retrieval Systems - Guest Editors' Introduction , 1995, Computer.

[12]  John A. Swets,et al.  Evaluation of diagnostic systems : methods from signal detection theory , 1982 .

[13]  J. Swets,et al.  Enhanced interpretation of diagnostic images. , 1988, Investigative radiology.

[14]  Gwo Giun Lee,et al.  A multiresolution wavelet analysis of digital mammograms , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[15]  Ian W. Ricketts,et al.  The Mammographic Image Analysis Society digital mammogram database , 1994 .

[16]  C A Roe,et al.  Dorfman-Berbaum-Metz method for statistical analysis of multireader, multimodality receiver operating characteristic data: validation with computer simulation. , 1997, Academic radiology.

[17]  A. Forrest Screening for breast cancer: the UK scene. The 69th Mackenzie Davidson memorial lecture. , 1989, The British journal of radiology.

[18]  Matthew T. Freedman,et al.  Image feature analysis for classification of microcalcifications in digital mammography: neural networks and genetic algorithms , 1997, Medical Imaging.

[19]  Robert A. Schmidt,et al.  Mammographic Screening: Sensitivity of General Radiologists , 1998, Digital Mammography / IWDM.

[20]  Christopher M. Bishop,et al.  Neural networks for pattern recognition , 1995 .

[21]  Jack Sklansky,et al.  A note on genetic algorithms for large-scale feature selection , 1989, Pattern Recognit. Lett..

[22]  M. Giger,et al.  Malignant and benign clustered microcalcifications: automated feature analysis and classification. , 1996, Radiology.

[23]  C E Metz,et al.  Some practical issues of experimental design and data analysis in radiological ROC studies. , 1989, Investigative radiology.

[24]  R. Elston,et al.  Essentials of biostatistics , 1988 .

[25]  J. Elmore,et al.  Ten-year risk of false positive screening mammograms and clinical breast examinations. , 1998, The New England journal of medicine.

[26]  Janet L. Kolodner,et al.  Case-Based Reasoning , 1989, IJCAI 1989.

[27]  Nico Karssemeijer Common database for research in mammographic image analysis , 1993, Electronic Imaging.

[28]  N. Petrick,et al.  Improvement of radiologists' characterization of mammographic masses by using computer-aided diagnosis: an ROC study. , 1999, Radiology.

[29]  Jack Sklansky,et al.  A visual neural network that learns perceptual relationships , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[30]  Nico Karssemeijer Digital mammography : Nijmegen, 1998 , 1998 .