A Monte Carlo algorithm for fast projective clustering
暂无分享,去创建一个
T. M. Murali | Pankaj K. Agarwal | Michael Jones | Cecilia M. Procopiuc | Michael Jones | P. Agarwal | C. Procopiuc | T. Murali | Michael Jonest | Michael Jones | Florham Park | T. M. Murali
[1] Paul A. Viola,et al. Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.
[2] Hans-Peter Kriegel,et al. Density-Connected Sets and their Application for Trend Detection in Spatial Databases , 1997, KDD.
[3] Raymond T. Ng,et al. Very large data bases , 1994 .
[4] Takeo Kanade,et al. Neural Network-Based Face Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..
[5] Paul A. Viola,et al. Robust Real-time Object Detection , 2001 .
[6] Daniel A. Keim,et al. An Efficient Approach to Clustering in Large Multimedia Databases with Noise , 1998, KDD.
[7] Daniel A. Keim,et al. Optimal Grid-Clustering: Towards Breaking the Curse of Dimensionality in High-Dimensional Clustering , 1999, VLDB.
[8] Philip S. Yu,et al. Finding generalized projected clusters in high dimensional spaces , 2000, SIGMOD '00.
[9] Sudipto Guha,et al. CURE: an efficient clustering algorithm for large databases , 1998, SIGMOD '98.
[10] Dimitrios Gunopulos,et al. Automatic subspace clustering of high dimensional data for data mining applications , 1998, SIGMOD '98.
[11] Sharad Mehrotra,et al. Local Dimensionality Reduction: A New Approach to Indexing High Dimensional Spaces , 2000, VLDB.
[12] Jiawei Han,et al. Efficient and Effective Clustering Methods for Spatial Data Mining , 1994, VLDB.
[13] Philip S. Yu,et al. Fast algorithms for projected clustering , 1999, SIGMOD '99.
[14] Hans-Peter Kriegel,et al. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.
[15] Takeo Kanade,et al. A statistical method for 3D object detection applied to faces and cars , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).
[16] Tian Zhang,et al. BIRCH: an efficient data clustering method for very large databases , 1996, SIGMOD '96.