Importance of blocking layers at conducting glass/TiO2 interfaces in dye-sensitized ionic-liquid solar cells

Thin Nb 2 O 5 film works as a potential blocking layer when deposited between fluorine-doped tin oxide and nanocrystalline TiO 2 layer, improving V oc and conversion efficiency of the dye-sensitized TiO 2 solar cells using ionic liquid electrolytes.

[1]  Emilio Palomares,et al.  Control of charge recombination dynamics in dye sensitized solar cells by the use of conformally deposited metal oxide blocking layers. , 2003, Journal of the American Chemical Society.

[2]  Arie Zaban,et al.  Core−Shell Nanoporous Electrode for Dye Sensitized Solar Cells: the Effect of the SrTiO3 Shell on the Electronic Properties of the TiO2 Core , 2003 .

[3]  Arie Zaban,et al.  Bilayer nanoporous electrodes for dye sensitized solar cells , 2000 .

[4]  Peng Wang,et al.  Charge separation and efficient light energy conversion in sensitized mesoscopic solar cells based on binary ionic liquids. , 2005, Journal of the American Chemical Society.

[5]  Michael Grätzel,et al.  Perspectives for dye‐sensitized nanocrystalline solar cells , 2000 .

[6]  Brian A. Gregg,et al.  Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces , 2001 .

[7]  Akira Fujishima,et al.  Improving the performance of solid-state dye-sensitized solar cell using MgO-coated TiO2 nanoporous film. , 2003, Chemical communications.

[8]  Ladislav Kavan,et al.  Highly efficient semiconducting TiO2 photoelectrodes prepared by aerosol pyrolysis , 1995 .

[9]  Laurence M. Peter,et al.  Characterization of titanium dioxide blocking layers in dye-sensitized nanocrystalline solar cells , 2003 .

[10]  T. Kitamura,et al.  Ionic liquid crystal as a hole transport layer of dye-sensitized solar cells. , 2005, Chemical communications.

[11]  Hans-Werner Schmidt,et al.  Systematic investigation of the role of compact TiO2 layer in solid state dye-sensitized TiO2 solar cells , 2004 .

[12]  Hironori Arakawa,et al.  Photoelectrochemical Properties of a Porous Nb2O5 Electrode Sensitized by a Ruthenium Dye , 1998 .

[13]  Seigo Ito,et al.  Control of dark current in photoelectrochemical (TiO2/I--I3-)) and dye-sensitized solar cells. , 2005, Chemical communications.

[14]  Eiji Kusano,et al.  Electrical and mechanical properties of SnO2:Nb films for touch screens , 2002 .

[15]  Shuming Yang,et al.  Enhanced energy conversion efficiency of the Sr2+-modified nanoporous TiO2 electrode sensitized with a ruthenium complex , 2002 .

[16]  Yasuhiko Ito,et al.  Room temperature ionic liquids of alkylimidazolium cations and fluoroanions , 2000 .

[17]  L. Peter,et al.  How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells? , 2005, The journal of physical chemistry. B.

[18]  J. Goldman,et al.  Electrochemical properties of imidazolium salt electrolytes for electrochemical capacitor applications , 1999 .

[19]  Tetsuya Tsuda,et al.  The Application of Room Temperature Molten Salt with Low Viscosity to the Electrolyte for Dye-Sensitized Solar Cell , 2001 .

[20]  D. Riley,et al.  Band-Edge Tuning in Self-Assembled Layers of Bi2S3 Nanoparticles Used To Photosensitize Nanocrystalline TiO2 , 2003 .