Hyperspectral Data Compression Tradeoff

Hyperspectral data are a challenge for data compression. Several factors make the constraints particularly stringent and the challenge exciting. First is the size of the data: as a third dimension is added, the amount of data increases dramatically making the compression necessary at different steps of the processing chain. Also different properties are required at different stages of the processing chain with variable tradeoff. Second, the differences in spatial and spectral relation between values make the more traditional 3D compression algorithms obsolete. And finally, the high expectations from the scientists using hyperspectral data require the assurance that the compression will not degrade the data quality. All these aspects are investigated in the present chapter and the different possible tradeoffs are explored. In conclusion, we see that a number of challenges remain, of which the most important is to find an easier way to qualify the different algorithm proposals.

[1]  Jarno Mielikäinen,et al.  Lossless Compression of Hyperspectral Images Using a Quantized Index to Lookup Tables , 2008, IEEE Geoscience and Remote Sensing Letters.

[2]  William A. Pearlman,et al.  Scalable hyperspectral image coding , 2005, Proceedings. (ICASSP '05). IEEE International Conference on Acoustics, Speech, and Signal Processing, 2005..

[3]  Enrico Magli,et al.  Progressive 3-D coding of hyperspectral images based on JPEG 2000 , 2006, IEEE Geoscience and Remote Sensing Letters.

[4]  Enrico Magli,et al.  Hyperspectral Image Compression Employing a Model of Anomalous Pixels , 2007, IEEE Geoscience and Remote Sensing Letters.

[5]  Enrico Magli Multiband Lossless Compression of Hyperspectral Images , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Enrico Magli,et al.  Unified Lossy and Near-Lossless Hyperspectral Image Compression Based on JPEG 2000 , 2008, IEEE Geoscience and Remote Sensing Letters.

[7]  Jing Zhang,et al.  An Efficient Reordering Prediction-Based Lossless Compression Algorithm for Hyperspectral Images , 2007, IEEE Geoscience and Remote Sensing Letters.

[8]  Shen-En Qian,et al.  Hyperspectral data compression using a fast vector quantization algorithm , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Yves Langevin,et al.  Image and spectral image compression for four experiments on the ROSETTA and Mars Express missions of ESA , 2000, SPIE Optics + Photonics.

[10]  Emmanuel Christophe,et al.  CNES studies of on-board compression for multispectral and hyperspectral images , 2007, SPIE Optical Engineering + Applications.

[11]  Rama Chellappa,et al.  Multiresolution Gauss-Markov random field models for texture segmentation , 1997, IEEE Trans. Image Process..

[12]  John F. Arnold,et al.  Lossy compression of hyperspectral data using vector quantization , 1997 .

[13]  Jocelyn Chanussot,et al.  Decision Fusion for the Classification of Hyperspectral Data: Outcome of the 2008 GRS-S Data Fusion Contest , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Pierre Duhamel,et al.  Adaptation of Zerotrees Using Signed Binary Digit Representations for 3 Dimensional Image Coding , 2006 .

[15]  Corinne Mailhes,et al.  Quality criteria benchmark for hyperspectral imagery , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Matthew Klimesh,et al.  Exploiting Calibration-Induced Artifacts in Lossless Compression of Hyperspectral Imagery , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[17]  Jing Zhang,et al.  Lossy-to-Lossless Compression of Hyperspectral Imagery Using Three-Dimensional TCE and an Integer KLT , 2008, IEEE Geoscience and Remote Sensing Letters.

[18]  Lori M. Bruce,et al.  Automated detection of subpixel hyperspectral targets with continuous and discrete wavelet transforms , 2001, IEEE Trans. Geosci. Remote. Sens..

[19]  Enrico Magli,et al.  Transform Coding Techniques for Lossy Hyperspectral Data Compression , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[20]  G. Moury,et al.  The new CCSDS image compression recommendation , 2005, 2005 IEEE Aerospace Conference.

[21]  Shen-En Qian,et al.  Near lossless data compression onboard a hyperspectral satellite , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[22]  Guizhong Liu,et al.  Efficient compression algorithm for hyperspectral images based on correlation coefficients adaptive 3D zerotree coding , 2008 .

[23]  William A. Pearlman,et al.  Three-Dimensional SPIHT Coding of Volume Images with Random Access and Resolution Scalability , 2006, 2006 Fortieth Asilomar Conference on Signals, Systems and Computers.

[24]  J. Mielikainen,et al.  Lossless compression of hyperspectral images using lookup tables , 2006, IEEE Signal Processing Letters.

[25]  Enrico Magli,et al.  Optimized onboard lossless and near-lossless compression of hyperspectral data using CALIC , 2004, IEEE Geoscience and Remote Sensing Letters.

[26]  Antonio Ortega,et al.  Sampling-Based Correlation Estimation for Distributed Source Coding Under Rate and Complexity Constraints , 2008, IEEE Transactions on Image Processing.

[27]  Rong Zhang,et al.  Lossless Compression of Hyperspectral Images Based on Searching Optimal Multibands for Prediction , 2009, IEEE Geoscience and Remote Sensing Letters.

[28]  Pierre Duhamel,et al.  Hyperspectral Image Compression: Adapting SPIHT and EZW to Anisotropic 3-D Wavelet Coding , 2008, IEEE Transactions on Image Processing.

[29]  M. Rast,et al.  The ESA Medium Resolution Imaging Spectrometer MERIS a review of the instrument and its mission , 1999 .

[30]  Joan Serra-Sagristà,et al.  Extending the CCSDS Recommendation for Image Data Compression for Remote Sensing Scenarios , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[31]  Dan Williams,et al.  Vector quantization using spectral index-based multiple subcodebooks for hyperspectral data compression , 2000, IEEE Trans. Geosci. Remote. Sens..

[32]  James E. Fowler,et al.  Three‐Dimensional Wavelet‐Based Compression of Hyperspectral Imagery , 2006 .

[33]  A. Bovik F Mean Squared Error: Love It or Leave It? , 2009 .

[34]  Luciano Alparone,et al.  Lossless Compression of Hyperspectral Images Using Multiband Lookup Tables , 2009, IEEE Signal Processing Letters.

[35]  Guangming Shi,et al.  Lossy-to-Lossless Hyperspectral Image Compression Based on Multiplierless Reversible Integer TDLT/KLT , 2009, IEEE Geoscience and Remote Sensing Letters.

[36]  Glen P. Abousleman,et al.  Robust hyperspectral image coding with channel-optimized trellis-coded quantization , 2002, IEEE Trans. Geosci. Remote. Sens..

[37]  Shen-En Qian,et al.  A multidisciplinary user acceptability study of hyperspectral data compressed using an on‐board near lossless vector quantization algorithm , 2005 .

[38]  James E. Fowler,et al.  3D WAVELET-BASED COMPRESSION OF HYPERSPECTRAL IMAGERY , 2007 .

[39]  Alan C. Bovik,et al.  Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures , 2009, IEEE Signal Processing Magazine.

[40]  B. Penna,et al.  A New Low Complexity KLT for Lossy Hyperspectral Data Compression , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[41]  William A. Pearlman,et al.  Low complexity resolution progressive image coding algorithm: progres (progressive resolution decompression) , 2005, IEEE International Conference on Image Processing 2005.

[42]  David Gillis,et al.  New improvements in the ORASIS algorithm , 2000, 2000 IEEE Aerospace Conference. Proceedings (Cat. No.00TH8484).

[43]  Pierre Duhamel,et al.  Adaptation of Zerotrees Using Signed Binary Digit Representations for 3D Image Coding , 2007, EURASIP J. Image Video Process..

[44]  Qian Du,et al.  Anomaly-Based JPEG2000 Compression of Hyperspectral Imagery , 2008, IEEE Geoscience and Remote Sensing Letters.

[45]  Mark R. Pickering,et al.  An improved M-NVQ algorithm for the compression of hyperspectral data , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[46]  Giovanni Motta,et al.  Compression of hyperspectral imagery , 2003, Data Compression Conference, 2003. Proceedings. DCC 2003.

[47]  Qian Du,et al.  On the Impact of Atmospheric Correction on Lossy Compression of Multispectral and Hyperspectral Imagery , 2009, IEEE Transactions on Geoscience and Remote Sensing.