On Hamiltonian-connected regular graphs

In this paper it is shown that any m-regular graph of order 2m (m ≧ 3), not isomorphic to Km,m, or of order 2m + 1 (m even, m ≧ 4), is Hamiltonian connected, which extends a previous result of Nash-Williams. As a corollary, it is derived that any such graph contains atleast m Hamiltonian cycles for odd m and atleast 1/2m Hamiltonian cycles for even m.