Role of anti-phase boundaries in the formation of magnetic domains in magnetite thin films

Anti-phase boundaries (APBs) are structural defects which have been shown to be responsible for the anomalous magnetic behavior observed in different nanostructures. Understanding their properties is crucial in order to use them to tune the properties of magnetic materials by growing APBs in a controlled way since their density strongly depends on the synthesis method. In this work we investigate their influence on magnetite (Fe3O4) thin films by considering an atomistic spin model, focussing our study on the role that the exchange interactions play across the APB interface. We conclude that the main atypical features reported experimentally in this material are well described by the model we propose here, confirming the new exchange interactions created in the APB as the responsible for this deviation from bulk properties.

[1]  I. Palacio,et al.  Geometrically defined spin structures in ultrathin Fe3O4 with bulk like magnetic properties. , 2018, Nanoscale.

[2]  C. Tai,et al.  Effect of in-situ electric field assisted growth on anti-phase boundaries in epitaxial Fe3O4 thin films on MgO , 2018, 1801.01520.

[3]  P. Nieves,et al.  Atomistic spin dynamics simulations of the MnAl τ -phase and its antiphase boundary , 2017 .

[4]  Yongbing Xu,et al.  Enhancement of intrinsic magnetic damping in defect-free epitaxial Fe3O4 thin films , 2017, Applied Physics Letters.

[5]  Q. Ramasse,et al.  Origin of reduced magnetization and domain formation in small magnetite nanoparticles , 2017, Scientific Reports.

[6]  A. Sánchez,et al.  The antiphase boundary in half-metallic Heusler alloy Co2Fe(Al,Si): atomic structure, spin polarization reversal, and domain wall effects , 2016 .

[7]  M. Muñoz,et al.  Temperature-dependent exchange stiffness and domain wall width in Co , 2016 .

[8]  J. Marco,et al.  Fourfold in-plane magnetic anisotropy of magnetite thin films grown on TiN buffered Si(001) by ion-assisted sputtering , 2016 .

[9]  S. Gallego,et al.  Electronic phase transitions in ultrathin magnetite films , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[10]  M. O. A. Ellis,et al.  The Landau–Lifshitz equation in atomistic models , 2015, 1505.07367.

[11]  K. McKenna,et al.  Atomic-scale structure and properties of highly stable antiphase boundary defects in Fe3O4 , 2014, Nature Communications.

[12]  P. Gawronski,et al.  Domain Walls in Nanostripes of Cubic-Anisotropy Ferromagnetic Materials , 2014, IEEE Transactions on Magnetics.

[13]  R. Evans,et al.  A STEM study of twin defects in Fe3O4(111)/YZO(111) , 2014 .

[14]  Z. Cai,et al.  Origin of anomalous magnetite properties in crystallographic matched heterostructures: Fe3O4(111)/MgAl2O4(111) , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  M. O. A. Ellis,et al.  Atomistic spin model simulations of magnetic nanomaterials , 2013, Journal of physics. Condensed matter : an Institute of Physics journal.

[16]  H. Hosono,et al.  Fe3O4(1 1 1) thin films with bulk-like properties: growth and atomic characterization , 2013 .

[17]  S. Celotto,et al.  Characterization of anti-phase boundaries in epitaxial magnetite films , 2003 .

[18]  I. Turek,et al.  Ab initio calculations of exchange interactions, spin-wave stiffness constants, and Curie temperatures of Fe, Co, and Ni , 2000, cond-mat/0007441.

[19]  P. Bloemen,et al.  A ferromagnetic resonance study on ultra-thin Fe3O4 layers grown on (0 0 1)MgO , 1998 .

[20]  J. Chapman,et al.  Origin of the Anomalous Magnetic Behavior in Single Crystal Fe 3 O 4 Films , 1997 .

[21]  Anthony Arrott,et al.  Introduction to the theory of ferromagnetism , 1996 .

[22]  Spada,et al.  Anomalous moment and anisotropy behavior in Fe3O4 films. , 1996, Physical review. B, Condensed matter.

[23]  B. Siberchicot,et al.  A first-principles study of exchange integrals in magnetite , 1995 .

[24]  Vandenberghe,et al.  Mössbauer study of the high-temperature phase of Co-substituted magnetites, CoxFe3-xO4. I. x <= 0.04. , 1993, Physical review. B, Condensed matter.

[25]  Aragón Cubic magnetic anisotropy of nonstoichiometric magnetite. , 1992, Physical Review B (Condensed Matter).

[26]  Zhang,et al.  Electron states, magnetism, and the Verwey transition in magnetite. , 1991, Physical review. B, Condensed matter.

[27]  W. Williams,et al.  Note on temperature dependence of exchange constant in magnetite , 1988 .

[28]  D. Dunlop,et al.  Magnetic Properties of Hydrothermally Recrystallized Magnetite Crystals , 1987, Science.

[29]  D. K. Wagner,et al.  Antiphase boundaries in GaAs , 1985 .

[30]  Akira Yanase,et al.  Band Structure in the High Temperature Phase of Fe3O4 , 1984 .

[31]  G. Sawatzky,et al.  Magnetic interactions and covalency effects in mainly ionic compounds , 1976 .

[32]  G. Samara,et al.  Effect of Pressure on the Néel Temperature of Magnetite , 1969 .

[33]  H. Zijlstra,et al.  Evidence by Lorentz Microscopy for Magnetically Active Stacking Faults in MnAl Alloy , 1966 .

[34]  Nicole Propst,et al.  Introduction To The Theory Of Ferromagnetism , 2016 .

[35]  Vandenberghe,et al.  Mössbauer study of the high-temperature phase of Co-substituted magnetites, CoxFe3-xO4. II. x >= 0.1. , 1993, Physical review. B, Condensed matter.

[36]  L. Néel,et al.  Propriétés magnétiques des ferrites ; ferrimagnétisme et antiferromagnétisme , 1948 .