A robust and consistent remeshing-transfer operator for ductile fracture simulations

This paper addresses the numerical simulation of quasi-static ductile fracture. The main focus is on numerical and stability aspects related to discrete crack propagation. Crack initiation and propagation are taken into account, both driven by the evolution of a discretely coupled damage variable. Discrete ductile failure is embedded in a geometrically nonlinear hyperelasto-plastic model, triggered by an appropriate criterion that has been evaluated for tensile and shear failure. A crack direction criterion is proposed, which is validated for both failure cases and which is capable of capturing the experimentally observed abrupt tensile-shear transition. In a large strain finite element context, remeshing enables to trace the crack geometry as well as to preserve an adequate element shape. Stability of the computations is an important issue during crack propagation that can be compromised by two factors, i.e. large stress redistributions during the crack opening and the transfer of variables between meshes. A numerical procedure is developed that renders crack propagation considerably more robust, independently of the mesh fineness and crack discretisation. A consistent transfer algorithm and a crack relaxation method are proposed and implemented for this purpose. Finally, illustrative simulations are compared with published experimental results to highlight the features mentioned.

[1]  T. Belytschko,et al.  Crack propagation by element-free Galerkin methods , 1995 .

[2]  J. C. Simo,et al.  A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multipli , 1988 .

[3]  F. A. McClintock,et al.  A Criterion for Ductile Fracture by the Growth of Holes , 1968 .

[4]  R. de Borst,et al.  Simulating the propagation of displacement discontinuities in a regularized strain‐softening medium , 2002 .

[5]  John S. Campbell,et al.  Local and global smoothing of discontinuous finite element functions using a least squares method , 1974 .

[6]  D Dirk Brokken,et al.  Numerical modelling of ductile fracture in blanking , 1999 .

[7]  Y. J. Chao,et al.  A simple theory for describing the transition between tensile and shear mechanisms in mode I, II, III and mixed-mode fracture , 1999 .

[8]  L. J. Sluys,et al.  From continuous to discontinuous failure in a gradient-enhanced continuum damage model , 2003 .

[9]  K. Bathe Finite Element Procedures , 1995 .

[10]  Sergio Oller,et al.  A general framework for continuum damage models. II. Integration algorithms, with applications to the numerical simulation of porous metals , 2000 .

[11]  Michael A. Sutton,et al.  Development and application of a crack tip opening displacement-based mixed mode fracture criterion , 2000 .

[12]  M. Ortiz,et al.  Computational modelling of impact damage in brittle materials , 1996 .

[13]  J. C. Simo,et al.  A framework for finite strain elastoplasticity based on maximum plastic dissipation and the multiplicative decomposition. part II: computational aspects , 1988 .

[14]  Ted Belytschko,et al.  Elastic crack growth in finite elements with minimal remeshing , 1999 .

[15]  Klaus-Jürgen Bathe,et al.  Computational issues in large strain elasto‐plasticity: an algorithm for mixed hardening and plastic spin , 2005 .

[16]  Bhushan Lal Karihaloo,et al.  Comprehensive structural integrity , 2003 .

[17]  David L. McDowell,et al.  Mixed-mode crack behavior , 1999 .

[18]  Sergio Oller,et al.  A general framework for continuum damage models. I. Infinitesimal plastic damage models in stress space , 2000 .

[19]  Mgd Marc Geers,et al.  Strongly non‐local gradient‐enhanced finite strain elastoplasticity , 2003 .

[20]  D. Krajcinovic,et al.  Introduction to continuum damage mechanics , 1986 .

[21]  Milan Jirásek,et al.  Embedded crack model: I. Basic formulation , 2001 .

[22]  J. F. Knott,et al.  The fracture behaviour of PMMA in mixed modes I and II , 1989 .

[23]  Fpt Frank Baaijens,et al.  Evaluation of ductile fracture models for different metals in blanking , 2001 .

[24]  Chien H. Wu Fracture Under Combined Loads by Maximum-Energy-Release-Rate Criterion , 1978 .

[25]  Donald F. Adams,et al.  Micromechanical Predictions of Crack Initiation, Propagation and Crack Growth Resistance in Boron/ Aluminum Composites , 1982 .

[26]  N. Hallbäck,et al.  Mixed-mode I/II fracture behaviour of a high strength steel , 1997 .

[27]  J. Newman,et al.  Measurement and analysis of critical CTOA for an aluminum alloy sheet , 1995 .

[28]  Arlo F. Fossum,et al.  A computational procedure for the simulation of ductile fracture with large plastic deformation , 1993 .

[29]  H. Espinosa,et al.  Adaptive FEM computation of geometric and material nonlinearities with application to brittle failure , 1998 .

[30]  Alessandro Pirondi,et al.  Characterisation of ductile mixed-mode fracture with the crack-tip displacement vector , 2001 .

[31]  Michael A. Sutton,et al.  Prediction of crack growth direction for mode I/II loading using small-scale yielding and void initiation/growth concepts , 1997 .

[32]  Wing Kam Liu,et al.  Nonlinear Finite Elements for Continua and Structures , 2000 .

[33]  Michael A. Sutton,et al.  An Experimental Study of CTOD for Mode I/Mode II Stable Crack Growth in Thin 2024-T3 Aluminum Specimens , 1995 .

[34]  J. W. Foulk,et al.  Physics-based Modeling of Brittle Fracture: Cohesive Formulations and the Application of Meshfree Methods , 2000 .

[35]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[36]  Z. Hashin,et al.  A method to produce uniform plane-stress states with applications to fiber-reinforced materials , 1978 .

[37]  John W. Hutchinson,et al.  Singular behaviour at the end of a tensile crack in a hardening material , 1968 .

[38]  Fpt Frank Baaijens,et al.  Predicting the shape of blanked products: a finite element approach , 2000 .

[39]  H. Andersson A finite-element representation of stable crack-growth , 1973 .

[40]  Fpt Frank Baaijens,et al.  Numerical modelling of the metal blanking process , 1998 .

[41]  J. C. Simo,et al.  An analysis of strong discontinuities induced by strain-softening in rate-independent inelastic solids , 1993 .

[42]  O. C. Zienkiewicz,et al.  Recovery procedures in error estimation and adaptivity. Part II: Adaptivity in nonlinear problems of elasto-plasticity behaviour , 1999 .

[43]  K. Bathe,et al.  Inelastic Analysis of Solids and Structures , 2004 .

[44]  J. Rice,et al.  Plane strain deformation near a crack tip in a power-law hardening material , 1967 .

[45]  M. Aliabadi A new generation of boundary element methods in fracture mechanics , 1997 .

[46]  David R. Owen,et al.  Transfer operators for evolving meshes in small strain elasto-placticity , 1996 .

[47]  S. Shima,et al.  Criteria for ductile fracture and their applications , 1980 .

[48]  John W. Hutchinson,et al.  Void Growth in Plastic Solids , 1992 .

[49]  A. Needleman,et al.  Analysis of the cup-cone fracture in a round tensile bar , 1984 .

[50]  Jean Lemaitre,et al.  A Course on Damage Mechanics , 1992 .

[51]  Michael A. Sutton,et al.  Effects of mixed mode I/II loading and grain orientation on crack initiation and stable tearing in 2024-T3 aluminum , 1997 .

[52]  D. Borst,et al.  Fundamental issues in finite element analyses of localization of deformation , 1993 .

[53]  Robert H. Dodds,et al.  Numerical procedures to model ductile crack extension , 1993 .

[54]  J. C. Simo,et al.  Associated coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation , 1992 .

[55]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[56]  I. L. Lim,et al.  A finite element code for fracture propagation analysis within elasto-plastic continuum , 1996 .

[57]  F. Erdogan,et al.  On the Crack Extension in Plates Under Plane Loading and Transverse Shear , 1963 .

[58]  Paul A. Wawrzynek,et al.  Quasi-automatic simulation of crack propagation for 2D LEFM problems , 1996 .

[59]  A. Pineau,et al.  A local criterion for cleavage fracture of a nuclear pressure vessel steel , 1983 .

[60]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[61]  J. Oliver A consistent characteristic length for smeared cracking models , 1989 .

[62]  J. C. Simo,et al.  On continuum damage-elastoplasticity at finite strains , 1989 .

[63]  Michael Ortiz,et al.  Adaptive mesh refinement in strain localization problems , 1991 .

[64]  J. C. Simo,et al.  Algorithms for static and dynamic multiplicative plasticity that preserve the classical return mapping schemes of the infinitesimal theory , 1992 .

[65]  R. Narasimhan,et al.  A finite element analysis of mixed-mode fracture initiation by ductile failure mechanisms , 1994 .

[66]  M. Ortiz,et al.  Adaptive Lagrangian modelling of ballistic penetration of metallic targets , 1997 .

[67]  Klaus-Jürgen Bathe,et al.  Error indicators and adaptive remeshing in large deformation finite element analysis , 1994 .

[68]  G. Sih Strain-energy-density factor applied to mixed mode crack problems , 1974 .

[69]  D. M. Tracey,et al.  On the ductile enlargement of voids in triaxial stress fields , 1969 .

[70]  C. Pavanachand,et al.  Remeshing issues in the finite element analysis of metal forming problems , 1998 .

[71]  J. F. Knott,et al.  Ductile fracture in HY100 steel under mixed mode I/Mode II loading , 1994 .

[72]  Mgd Marc Geers,et al.  A critical comparison of nonlocal and gradient-enhanced softening continua , 2001 .

[73]  Pierre-Olivier Bouchard,et al.  Crack propagation modelling using an advanced remeshing technique , 2000 .

[74]  L. J. Sluys,et al.  A new method for modelling cohesive cracks using finite elements , 2001 .

[75]  G. Touzot,et al.  Continuous Stress Fields in Finite Element Analysis , 1977 .

[76]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .