Period Extension and Randomness Enhancement Using High-Throughput Reseeding-Mixing PRNG

We present a new reseeding-mixing method to extend the system period length and to enhance the statistical properties of a chaos-based logistic map pseudo random number generator (PRNG). The reseeding method removes the short periods of the digitized logistic map and the mixing method extends the system period length to 2253 by “xoring” with a DX generator. When implemented in the TSMC 0.18- μm 1P6M CMOS process, the new reseeding-mixing PRNG (RM-PRNG) attains the best throughput rate of 6.4 Gb/s compared with other nonlinear PRNGs. In addition, the generated random sequences pass the NIST SP 800-22 statistical tests including ratio test and U-value test.

[1]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[2]  Chester Rebeiro,et al.  Theory of Composing Non-linear Machines with Predictable Cyclic Structures , 2008, ACRI.

[3]  Tao Sang,et al.  Clock-controlled chaotic keystream generators , 1998 .

[4]  Nur A. Touba,et al.  LFSR-Reseeding Scheme Achieving Low-Power Dissipation During Test , 2007, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[5]  Elaine B. Barker,et al.  A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .

[6]  Lih-Yuan Deng,et al.  A system of high-dimensional, efficient, long-cycle and portable uniform random number generators , 2003, TOMC.

[7]  T. Addabbo,et al.  On the Efficient Digital Implementation of Nonlinear Congruential Generators derived from the Rényi Chaotic Map , 2008, 2008 IEEE Instrumentation and Measurement Technology Conference.

[8]  Sang Tao,et al.  Perturbance-based algorithm to expand cycle length of chaotic key stream , 1998 .

[9]  Guanrong Chen,et al.  On the Dynamical Degradation of Digital Piecewise Linear Chaotic Maps , 2005, Int. J. Bifurc. Chaos.

[10]  J. Cernák Digital generators of chaos , 1996 .

[11]  Massimo Alioto,et al.  A Class of Maximum-Period Nonlinear Congruential Generators Derived From the Rényi Chaotic Map , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[12]  Bernard Courtois,et al.  Built-In Test for Circuits with Scan Based on Reseeding of Multiple-Polynomial Linear Feedback Shift Registers , 1995, IEEE Trans. Computers.

[13]  Debdeep Mukhopadhyay Group Properties of Non-linear Cellular Automata , 2010, J. Cell. Autom..

[14]  Manuel Blum,et al.  A Simple Unpredictable Pseudo-Random Number Generator , 1986, SIAM J. Comput..

[15]  Mark Goresky,et al.  Feedback shift registers, 2-adic span, and combiners with memory , 1997, Journal of Cryptology.

[16]  Lih-Yuan Deng,et al.  Efficient and portable multiple recursive generators of large order , 2005, TOMC.

[17]  Xiaowen Li,et al.  A new spatiotemporally chaotic cryptosystem and its security and performance analyses. , 2004, Chaos.

[18]  Rodney Sparapani,et al.  Random Number Generation and Monte Carlo Methods (2nd edition) , 2004 .

[19]  Chien-Chih Huang,et al.  A nonlinear PRNG using digitized logistic map with self-reseeding method , 2010, Proceedings of 2010 International Symposium on VLSI Design, Automation and Test.

[20]  L. Kocarev,et al.  Chaos and cryptography: block encryption ciphers based on chaotic maps , 2001 .

[21]  Pei-Chi Wu,et al.  Multiplicative, congruential random-number generators with multiplier ± 2k1 ± 2k2 and modulus 2p - 1 , 1997, TOMS.

[22]  Mark Goresky,et al.  Periodicity and Distribution Properties of Combined FCSR Sequences , 2006, SETA.

[23]  Donald Ervin Knuth,et al.  The Art of Computer Programming, 2nd Ed. (Addison-Wesley Series in Computer Science and Information , 1978 .

[24]  Massoud Pedram,et al.  Charge Recycling in Power-Gated CMOS Circuits , 2008, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[25]  L. Kocarev,et al.  Chaos-based random number generators-part I: analysis [cryptography] , 2001 .

[26]  Riccardo Rovatti,et al.  Chaotic Electronics in Telecommunications , 2000 .

[27]  Wolfgang A. Halang,et al.  Analysis of a Multiple-Output Pseudo-Random-Bit Generator Based on a Spatiotemporal Chaotic System , 2006, Int. J. Bifurc. Chaos.

[28]  Craig B. Borkowf,et al.  Random Number Generation and Monte Carlo Methods , 2000, Technometrics.

[29]  Xuanqin Mou,et al.  Pseudo-random Bit Generator Based on Couple Chaotic Systems and Its Applications in Stream-Cipher Cryptography , 2001, INDOCRYPT.

[30]  Tsin-Yuan Chang,et al.  A chaos-based pseudo random number generator using timing-based reseeding method , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[31]  Rainer Göttfert,et al.  An NLFSR-based stream cipher , 2006, 2006 IEEE International Symposium on Circuits and Systems.