Second-Order Approach to Optimal Semiconductor Design

Abstract Second order methods for optimal semiconductor design based on the standard drift diffusion model are developed. Second–order necessary and sufficient conditions are established. Local quadratic convergence for the Newton method is proved. Numerical results for an unsymmetric (n–p) diode are presented.

[1]  Fredi Tröltzsch,et al.  Optimal Control of Complex Structures , 2002 .

[2]  Ansgar Jüngel,et al.  Quasi-hydrodynamic Semiconductor Equations , 2001 .

[3]  Siegfried Selberherr,et al.  Closed-Loop MOSFET Doping Profile Optimization for Portable Systems , 1999 .

[4]  Kazufumi Ito,et al.  Identifiability of semiconductor defects from LBIC images , 1992 .

[5]  Martin Burger,et al.  Fast Optimal Design of Semiconductor Devices , 2003, SIAM J. Appl. Math..

[6]  Kazufumi Ito,et al.  Reconstruction of Semiconductor Doping Profile from Laser-Beam-Induced Current Image , 1994, SIAM J. Appl. Math..

[7]  Michael Wolff,et al.  A uniqueness theorem for weak solutions of the stationary semiconductor equations , 1991 .

[8]  Kazufumi Ito,et al.  Modeling and Analysis of Laser-Beam-Induced Current Images in Semiconductors , 1993, SIAM J. Appl. Math..

[9]  R. Pinnau Mathematical Tools in Optimal Semiconductor Design , 2005 .

[10]  Weifu Fang,et al.  Inverse problems for metal oxide semiconductor field-effect transistor contact resistivity , 1992 .

[11]  Paola Pietra,et al.  Two-dimensional exponential fitting and applications to drift-diffusion models , 1989 .

[12]  René Pinnau,et al.  AN OPTIMAL CONTROL APPROACH TO SEMICONDUCTOR DESIGN , 2002 .

[13]  Karl Kunisch,et al.  Second Order Methods for Optimal Control of Time-Dependent Fluid Flow , 2001, SIAM J. Control. Optim..

[14]  H. Gummel,et al.  Large-signal analysis of a silicon Read diode oscillator , 1969 .

[15]  M. S. Mock,et al.  Analysis of mathematical models of semiconductors devices , 1983 .

[16]  Jinchao Xu,et al.  Recent Progress in Computational and Applied PDES , 2002 .

[17]  Lorenzo Ciampolini Scanning capacitance microscope imaging and modelling , 2001 .

[18]  Peter A. Markowich,et al.  The Stationary Semiconductor Device Equations. , 1987 .

[19]  S. Selberherr,et al.  The extraction of two-dimensional MOS transistor doping via inverse modeling , 1995, IEEE Electron Device Letters.

[20]  Martin Burger,et al.  Identification of doping profiles in semiconductor devices , 2001 .

[21]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[22]  S. Selberherr Analysis and simulation of semiconductor devices , 1984 .

[23]  T. Steihaug The Conjugate Gradient Method and Trust Regions in Large Scale Optimization , 1983 .

[24]  K. Teo,et al.  Regular Article: An Optimization Approach to a Finite Dimensional Parameter Estimation Problem in Semiconductor Device Design , 1999 .

[25]  K. Kunisch,et al.  Augmented Lagrangian--SQP Methods for Nonlinear OptimalControl Problems of Tracking Type , 1996 .

[26]  Graham F. Carey,et al.  Advanced Numerical Methods and Software Approaches for Semiconductor Device Simulation , 2000, VLSI Design.

[27]  Carl Tim Kelley,et al.  Iterative methods for optimization , 1999, Frontiers in applied mathematics.

[28]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[29]  C. Schmeiser,et al.  Semiconductor equations , 1990 .

[30]  Siegfried Selberherr,et al.  A Qualitative Study on Optimized MOSFET Doping Profiles , 1998 .

[31]  David G. Seiler,et al.  Characterization of two‐dimensional dopant profiles: Status and review , 1995 .