Some discrete maximum principles arising for nonlinear elliptic finite element problems

The discrete maximum principle (DMP) is an important measure of the qualitative reliability of the applied numerical scheme for elliptic problems. This paper starts with formulating simple sufficient conditions for the matrix case and for nonlinear forms in Banach spaces. Then a DMP is derived for finite element solutions for certain nonlinear partial differential equations: we address nonlinear elliptic problems with mixed boundary conditions and interface conditions, allowing possibly degenerate nonlinearities and thus extending our previous results.

[1]  T. Vejchodský The discrete maximum principle for Galerkin solutions of elliptic problems , 2012 .

[2]  Alexandre Ern,et al.  Stabilized Galerkin approximation of convection-diffusion-reaction equations: discrete maximum principle and convergence , 2005, Math. Comput..

[3]  H. Weinberger,et al.  Maximum principles in differential equations , 1967 .

[4]  P. G. Ciarlet,et al.  Maximum principle and uniform convergence for the finite element method , 1973 .

[5]  J. McLeod Nonlinear Diffusion Equations. , 1985 .

[6]  Sergey Korotov,et al.  An Algebraic Discrete Maximum Principle in Hilbert Space with Applications to Nonlinear Cooperative Elliptic Systems , 2009, SIAM J. Numer. Anal..

[7]  Antti Hannukainen,et al.  Discrete maximum principle for FE solutions of the diffusion-reaction problem on prismatic meshes , 2009 .

[8]  C. Kreuzer,et al.  Convex hull property and maximum principle for finite element minimisers of general convex functionals , 2013, Numerische Mathematik.

[9]  Tomás Vejchodský,et al.  Discrete maximum principle for higher-order finite elements in 1D , 2007, Math. Comput..

[10]  Patrizia Pucci,et al.  The Maximum Principle , 2007 .

[11]  E. Zeidler Nonlinear functional analysis and its applications , 1988 .

[12]  Sergey Korotov,et al.  Discrete maximum principles for FEM solutions of some nonlinear elliptic interface problems , 2009 .

[13]  M. Fiedler Special matrices and their applications in numerical mathematics , 1986 .

[14]  Philippe G. Ciarlet,et al.  Discrete maximum principle for finite-difference operators , 1970 .

[15]  Sergey Korotov,et al.  On discrete maximum principles for nonlinear elliptic problems , 2007, Math. Comput. Simul..

[16]  István Faragó,et al.  Numerical solution of nonlinear elliptic problems via preconditioning operators : theory and applications , 2002 .

[17]  Ludmil T. Zikatanov,et al.  A monotone finite element scheme for convection-diffusion equations , 1999, Math. Comput..

[18]  Sergey Korotov,et al.  The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem , 2008 .

[19]  Sergey Korotov,et al.  Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions , 2005, Numerische Mathematik.

[20]  Antti Hannukainen,et al.  On Weakening Conditions for Discrete Maximum Principles for Linear Finite Element Schemes , 2009, NAA.

[21]  Sergey Korotov,et al.  On Nonobtuse Simplicial Partitions , 2009, SIAM Rev..

[22]  J. López-Gómez The strong maximum principle , 2013 .

[23]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[24]  Zhilin Li A Fast Iterative Algorithm for Elliptic Interface Problems , 1998 .

[25]  Todd F. Dupont,et al.  Failure of the discrete maximum principle for an elliptic finite element problem , 2004, Math. Comput..

[26]  Gui-Qiang G. Chen,et al.  Measure-Theoretic Analysis and Nonlinear Conservation Laws , 2007 .

[27]  Sergey Korotov,et al.  Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle , 2001, Math. Comput..

[28]  István Faragó Matrix and Discrete Maximum Principles , 2009, LSSC.

[29]  Sergey Korotov,et al.  A DISCRETE MAXIMUM PRINCIPLE IN HILBERT SPACE WITH APPLICATIONS TO NONLINEAR COOPERATIVE ELLIPTIC SYSTEMS , 2008 .