Self‐similarity analysis of vehicle driver's electrodermal activity

[1]  A. Eke,et al.  Fractal characterization of complexity in temporal physiological signals , 2002, Physiological measurement.

[2]  Patrice Abry,et al.  A Wavelet-Based Joint Estimator of the Parameters of Long-Range Dependence , 1999, IEEE Trans. Inf. Theory.

[3]  Françoise Argoul,et al.  Wavelet-based multifractal analysis of dynamic infrared thermograms to assist in early breast cancer diagnosis , 2014, Front. Physiol..

[4]  Joris H. Janssen,et al.  Emotional sweating across the body: Comparing 16 different skin conductance measurement locations , 2012, Physiology & Behavior.

[5]  Jeffrey M. Hausdorff Gait dynamics, fractals and falls: finding meaning in the stride-to-stride fluctuations of human walking. , 2007, Human movement science.

[6]  Jean-Marc Bardet,et al.  Wavelet Estimator of Long-Range Dependent Processes , 2000 .

[7]  Enzo Pasquale Scilingo,et al.  The Role of Nonlinear Dynamics in Affective Valence and Arousal Recognition , 2012, IEEE Transactions on Affective Computing.

[8]  Franca Tecchio,et al.  Age-Related Changes in Electroencephalographic Signal Complexity , 2015, PloS one.

[9]  Sebastian Wallot,et al.  Using complexity metrics with R-R intervals and BPM heart rate measures , 2013, Front. Physiol..

[10]  Patrick Flandrin,et al.  Wavelet analysis and synthesis of fractional Brownian motion , 1992, IEEE Trans. Inf. Theory.

[11]  Jeffrey M. Hausdorff,et al.  Physionet: Components of a New Research Resource for Complex Physiologic Signals". Circu-lation Vol , 2000 .

[12]  W. Boucsein Electrodermal activity, 2nd ed. , 2012 .

[13]  Atsushi Yamashita,et al.  Continuous Estimation of Stress Using Physiological Signals during a Car Race , 2017 .

[14]  R J Anderson,et al.  Stress among package truck drivers. , 1997, American journal of industrial medicine.

[15]  Matthew Roughan,et al.  Real-time estimation of the parameters of long-range dependence , 2000, TNET.

[16]  B. Roth,et al.  A mathematical model for electrical stimulation of a monolayer of cardiac cells. , 2004 .

[17]  Emmanuel Bacry,et al.  Wavelet-based estimators of scaling behavior , 2002, IEEE Trans. Inf. Theory.

[18]  François Roueff,et al.  On the Spectral Density of the Wavelet Coefficients of Long‐Memory Time Series with Application to the Log‐Regression Estimation of the Memory Parameter , 2005, math/0512635.

[19]  T. Šmuc,et al.  Non-linear analysis of heart rate variability in patients with coronary heart disease , 2002, Computers in Cardiology.

[20]  P. Rossini,et al.  Electroencephalographic Fractal Dimension in Healthy Ageing and Alzheimer’s Disease , 2016, PloS one.

[21]  Bruce J. West,et al.  Fractal response of physiological signals to stress conditions, environmental changes, and neurodegenerative diseases , 2007, Complex..

[22]  A. Babloyantz,et al.  Evidence of Chaotic Dynamics of Brain Activity During the Sleep Cycle , 1985 .

[23]  E. Saperova,et al.  State Anxiety and Nonlinear Dynamics of Heart Rate Variability in Students , 2016, PloS one.

[24]  Petr Bob,et al.  Dissociative States and Chaotic Patterns of Electrodermal Activity During Associative Experiment , 2010 .

[25]  S. Mallat Multiresolution approximations and wavelet orthonormal bases of L^2(R) , 1989 .

[26]  John T. Cacioppo,et al.  Heart Rate Variability: Stress and Psychiatric Conditions , 2007 .

[27]  Julián J. González,et al.  Non-linear behaviour of human EEG: fractal exponent versus correlation dimension in awake and sleep stages , 1998, Neuroscience Letters.

[28]  Lanlan Chen,et al.  Detecting driving stress in physiological signals based on multimodal feature analysis and kernel classifiers , 2017, Expert Syst. Appl..

[29]  Ingrid Tonhajzerova,et al.  The complexity of electrodermal activity is altered in mental cognitive stressors , 2016, Comput. Biol. Medicine.

[30]  Guangyuan Liu,et al.  Computing nonlinear features of skin conductance to build the affective detection model , 2013, 2013 International Conference on Communications, Circuits and Systems (ICCCAS).

[31]  Bin Li,et al.  Physiological Signal Variability Analysis Based on the Largest Lyapunov Exponent , 2009, 2009 2nd International Conference on Biomedical Engineering and Informatics.

[32]  Daniel W. Jones,et al.  Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. , 2003, Hypertension.

[33]  Imen Kammoun,et al.  A new process for modeling heartbeat signals during exhaustive run with an adaptive estimator of its fractal parameters , 2012 .

[34]  U. Rajendra Acharya,et al.  Non-linear analysis of EEG signals at various sleep stages , 2005, Comput. Methods Programs Biomed..

[35]  D. Percival,et al.  Physiological time series: distinguishing fractal noises from motions , 2000, Pflügers Archiv.

[36]  E. Bacry,et al.  Singularity spectrum of fractal signals from wavelet analysis: Exact results , 1993 .

[37]  C. M. Lim,et al.  Characterization of EEG - A comparative study , 2005, Comput. Methods Programs Biomed..

[38]  J. Gitter,et al.  Fractal analysis of the electromyographic interference pattern , 1995, Journal of Neuroscience Methods.

[39]  Jean-Michel Poggi,et al.  Random Forest-Based Approach for Physiological Functional Variable Selection: Towards Driver’s Stress Level Classification , 2018 .

[40]  Ding Ding,et al.  The acute physiological stress response to driving: A systematic review , 2017, PloS one.

[41]  H. Huikuri,et al.  Fractal and Complexity Measures of Heart Rate Variability , 2005, Clinical and experimental hypertension.

[42]  J. L. del Río Correa,et al.  Fractal and Multifractal Analysis of Human Gait , 2003 .

[43]  Jennifer Healey,et al.  Detecting stress during real-world driving tasks using physiological sensors , 2005, IEEE Transactions on Intelligent Transportation Systems.