Resonances and Twist in Volume-Preserving Mappings

The phase space of an integrable, volume-preserving map with one action and d angles is foliated by a one-parameter family of d-dimensional invariant tori. Perturbations of such a system may lead to chaotic dynamics and transport. We show that near a rank-one, resonant torus these mappings can be reduced to volume-preserving “standard maps.” These have twist only when the image of the frequency map crosses the resonance curve transversely. We show that these maps can be approximated—using averaging theory—by the usual area-preserving twist or nontwist standard maps. The twist condition appropriate for the volume-preserving setting is shown to be distinct from the nondegeneracy condition used in (volume-preserving) KAM theory.

[1]  Roberto Venegeroles Universality of algebraic laws in hamiltonian systems. , 2008, Physical review letters.

[2]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .

[3]  Fotis Sotiropoulos,et al.  Chaotic advection in three-dimensional stationary vortex-breakdown bubbles: šil'nikov's chaos and the devil's staircase , 2001, Journal of Fluid Mechanics.

[4]  C. Simó Invariant curves of analytic perturbed nontwist area preserving maps , 1998 .

[5]  A nonperturbative Eliasson's reducibility theorem , 2005, math/0503356.

[6]  N. Brännström AVERAGING IN WEAKLY COUPLED DISCRETE DYNAMICAL SYSTEMS , 2009 .

[7]  O. Piro,et al.  An Introduction to Chaotic Advection , 1999 .

[8]  Passive scalars and three-dimensional Liouvillian maps , 1994, chao-dyn/9410005.

[9]  Piro,et al.  Diffusion in three-dimensional Liouvillian maps. , 1988, Physical review letters.

[10]  J. Meiss The destruction of tori in volume-preserving maps , 2011, 1103.0050.

[11]  E. Saatdjian,et al.  Chaotic advection in a three‐dimensional stokes flow , 2003 .

[12]  J. Villanueva,et al.  Effective reducibility of quasi-periodic linear equations close to constant coefficients , 1997 .

[13]  J. Meiss,et al.  Chaotic advection and the emergence of tori in the Küppers-Lortz state. , 2008, Chaos.

[14]  F. Verhulst,et al.  Averaging Methods in Nonlinear Dynamical Systems , 1985 .

[15]  Mikhail B Sevryuk,et al.  Partial preservation of frequencies in KAM theory , 2006 .

[16]  J. Rogers Chaos , 1876 .

[17]  Stephen Wiggins,et al.  KAM tori are very sticky: rigorous lower bounds on the time to move away from an invariant Lagrangian torus with linear flow , 1994 .

[18]  O. S. Galaktionov,et al.  Three-dimensional mixing in Stokes flow : the partitioned pipe mixer problem revisited , 1999 .

[19]  J. M. Greene Reconnection of vorticity lines and magnetic lines , 1993 .

[20]  C. Meunier,et al.  Multiphase Averaging for Classical Systems: With Applications To Adiabatic Theorems , 1988 .

[21]  Leo P. Kadanoff,et al.  The break-up of a heteroclinic connection in a volume preserving mapping , 1993 .

[22]  J. Meiss,et al.  Resonance zones and lobe volumes for exact volume-preserving maps , 2008, 0812.1810.

[23]  Emilia Petrisor,et al.  Nontwist Area Preserving Maps with Reversing Symmetry Group , 2001, Int. J. Bifurc. Chaos.

[24]  Hendrik Broer,et al.  Hopf saddle-node bifurcation for fixed points of 3D-diffeomorphisms: Analysis of a resonance ‘bubble’ , 2008 .

[25]  Mfm Michel Speetjens,et al.  A numerical and experimental study on advection in three-dimensional Stokes flows , 2004, Journal of Fluid Mechanics.

[26]  A. Lichtenberg,et al.  Regular and Chaotic Dynamics , 1992 .

[27]  Chong-Qing Cheng,et al.  Existence of invariant tori in three-dimensional measure-preserving mappings , 1989 .

[28]  H. Scott Dumas,et al.  First-Order Averaging Principles for Maps with Applications to Accelerator Beam Dynamics , 2004, SIAM J. Appl. Dyn. Syst..

[29]  J. Meiss Symplectic maps, variational principles, and transport , 1992 .

[30]  J. Howard,et al.  Stochasticity and reconnection in Hamiltonian systems , 1984 .

[31]  A. Rau Variational Principles , 2021, Classical Mechanics.

[32]  Yi-sui Sun,et al.  Chaotic motion of comets in near-parabolic orbit: Mapping approaches , 1994 .

[33]  A. Apte,et al.  Meanders and reconnection-collision sequences in the standard nontwist map. , 2004, Chaos.

[34]  J. Meiss,et al.  Generating forms for exact volume-preserving maps , 2008, 0803.4350.

[35]  Rafael de la Llave,et al.  KAM Theory and a Partial Justification of Greene's Criterion for Nontwist Maps , 2000, SIAM J. Math. Anal..

[36]  James D. Meiss,et al.  Differential dynamical systems , 2007, Mathematical modeling and computation.

[37]  J. Lamb,et al.  Self-similarity of period-doubling branching 3-D reversible mappings , 1995 .

[38]  A. Thyagaraja,et al.  Representation of volume‐preserving maps induced by solenoidal vector fields , 1985 .

[39]  Zhihong Xia Existence of invariant tori in volume-preserving diffeomorphisms , 1992, Ergodic Theory and Dynamical Systems.

[40]  G. Cristadoro,et al.  Universality of algebraic decays in Hamiltonian systems. , 2008, Physical review letters.

[41]  Ravi P. Agarwal,et al.  Difference equations and inequalities , 1992 .

[42]  James D. Meiss,et al.  Transport in Hamiltonian systems , 1984 .

[43]  Hendrik Broer,et al.  The Hopf-saddle-node bifurcation for fixed points of 3D-diffeomorphisms: the Arnol'd resonance web , 2008 .

[44]  J. Moser On the Theory of Quasiperiodic Motions , 1966 .

[45]  Lawrence M. Perko,et al.  Higher order averaging and related methods for perturbed periodic and quasi-periodic systems , 1969 .

[46]  Edward Ott,et al.  Markov tree model of transport in area-preserving maps , 1985 .

[47]  Yi-sui Sun,et al.  Stickiness in three-dimensional volume preserving mappings , 2009 .

[48]  I. Mezić Break-up of invariant surfaces in action—angle—angle maps and flows , 2001 .

[49]  James D. Meiss,et al.  Quadratic Volume-Preserving Maps: Invariant Circles and Bifurcations , 2008, SIAM J. Appl. Dyn. Syst..

[50]  J. Pöschel,et al.  Nekhoroshev estimates for quasi-convex hamiltonian systems , 1993 .

[51]  Julyan H. E. Cartwright,et al.  Chaotic advection in three-dimensional unsteady incompressible laminar flow , 1995, Journal of Fluid Mechanics.

[52]  J. Meiss,et al.  Normal forms for 4D symplectic maps with twist singularities , 2005, nlin/0508028.

[53]  Gwm Gerrit Peters,et al.  Experimental/Numerical Analysis of Chaotic Advection in a Three-dimensional Cavity Flow , 2006 .