Primitive divisors in arithmetic dynamics

Abstract Let ϕ(z) ∈ (z) be a rational function of degree d ≥ 2 with ϕ(0) = 0 and such that ϕ does not vanish to order d at 0. Let α ∈ have infinite orbit under iteration of ϕ and write ϕn(α) = An/Bn as a fraction in lowest terms. We prove that for all but finitely many n ≥ 0, the numerator An has a primitive divisor, i.e., there is a prime p such that p | An and p ∤ Ai for all i < n. More generally, we prove an analogous result when ϕ is defined over a number field and 0 is a preperiodic point for ϕ.

[1]  Michelle Manes,et al.  Arithmetic Dynamics of Rational Maps , 2007 .

[2]  H. S. Vandiver,et al.  On the Integral Divisors of a n - b n , 1904 .

[3]  Joseph H. Silverman,et al.  Integer points, Diophantine approximation, and iteration of rational maps , 1993 .

[4]  Liang-Chung Hsia On the reduction of a non-torsion point of a Drinfeld module , 2008 .

[5]  Guillaume Hanrot,et al.  Existence of Primitive Divisors of Lucas and Lehmer Numbers , 2001 .

[6]  R. W. K. Odoni,et al.  The Galois Theory of Iterates and Composites of Polynomials , 1985 .

[7]  Rafe Jones,et al.  The density of prime divisors in the arithmetic dynamics of quadratic polynomials , 2006, math/0612415.

[8]  Joseph H. Silverman,et al.  Wieferich's criterion and the abc-conjecture , 1988 .

[9]  Brian Rice,et al.  PRIMITIVE PRIME DIVISORS IN POLYNOMIAL ARITHMETIC DYNAMICS , 2007 .

[10]  R. Odoni On the Prime Divisors of the Sequence Wn+1 = 1 + W1…Wn , 1985 .

[11]  A. Schinzel Primitive divisors of the expression An - Bn in algebraic number fields. , 1968 .

[13]  R. D. Carmichael,et al.  On the Numerical Factors of the Arithmetic Forms α n ± β n , 1913 .

[14]  M. Baker A finiteness theorem for canonical heights attached to rational maps over function fields , 2006, math/0601046.

[15]  Bjorn Poonen Using Elliptic Curves of Rank One towards the Undecidability of Hilbert's Tenth Problem over Rings of Algebraic Integers , 2002, ANTS.

[16]  Patrick Ingram Elliptic divisibility sequences over certain curves , 2007 .

[17]  R. Benedetto Wandering Domains in Non‐Archimedean Polynomial Dynamics , 2003, math/0312029.

[18]  R. Benedetto Examples of wandering domains in p-adic polynomial dynamics , 2002 .

[19]  J. Silverman The Arithmetic of Dynamical Systems , 2007 .

[20]  Joseph H. Silverman,et al.  Diophantine Geometry: An Introduction , 2000, The Mathematical Gazette.

[21]  Fadwa S. Abu Muriefah,et al.  On the Diophantine Equation x2+q2k+1=yn , 2002 .

[22]  Morgan Ward,et al.  Memoir on Elliptic Divisibility Sequences , 1948 .

[23]  Heights and preperiodic points of polynomials over function fields , 2005, math/0510444.

[24]  Graham Everest,et al.  Primitive divisors of elliptic divisibility sequences , 2006 .

[25]  Formal Flows on the Non-Archimedean Open Unit Disk , 2000, Compositio Mathematica.

[26]  Gregory S. Call,et al.  Canonical heights on varieties with morphisms , 1993 .

[27]  D. Ghioca,et al.  Equidistribution and integral points for Drinfeld modules , 2006, math/0609120.

[28]  K. Zsigmondy,et al.  Zur Theorie der Potenzreste , 1892 .