Fidelity of aminoacyl-tRNA selection on the ribosome: kinetic and structural mechanisms.

The ribosome discriminates between correct and incorrect aminoacyl-tRNAs (aa-tRNAs), or their complexes with elongation factor Tu (EF-Tu) and GTP, according to the match between anticodon and mRNA codon in the A site. Selection takes place at two stages, prior to GTP hydrolysis (initial selection) and after GTP hydrolysis but before peptide bond formation (proofreading). In part, discrimination results from different rejection rates that are due to different stabilities of the respective codon-anticodon complexes. An important additional contribution is provided by induced fit, in that only correct codon recognition leads to acceleration of rate-limiting rearrangements that precede chemical steps. Recent elucidation of ribosome structures and mutational analyses suggest which residues of the decoding center may be involved in signaling formation of the correct codon-anticodon duplex to the functional centers of the ribosome. In utilizing induced fit for substrate discrimination, the ribosome resembles other nucleic acid-programmed polymerases.

[1]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[2]  J. Ninio Kinetic amplification of enzyme discrimination. , 1975, Biochimie.

[3]  W. Tapprich,et al.  A single base mutation at position 2661 in E. coli 23S ribosomal RNA affects the binding of ternary complex to the ribosome. , 1990, The EMBO journal.

[4]  M. Ehrenberg,et al.  Kinetic properties of Escherichia coli ribosomes with altered forms of S12. , 1992, Journal of molecular biology.

[5]  S. Stern,et al.  Interactions of a small RNA with antibiotic and RNA ligands of the 30S subunit , 1994, Nature.

[6]  M. Yarus,et al.  Transfer RNA structure and coding specificity. II. A D-arm tertiary interaction that restricts coding range. , 1989, Journal of molecular biology.

[7]  L. Bosch,et al.  Mutants of the elongation factor EF‐Tu, a new class of nonsense suppressors. , 1985, The EMBO journal.

[8]  T. Steitz,et al.  Structural biology: A mechanism for all polymerases , 1998, Nature.

[9]  L. Breeden,et al.  The bases of the tRNA anticodon loop are independent by genetic criteria. , 1987, Nucleic acids research.

[10]  T. Pape,et al.  Complete kinetic mechanism of elongation factor Tu‐dependent binding of aminoacyl‐tRNA to the A site of the E.coli ribosome , 1998, The EMBO journal.

[11]  R. B. Loftfield THE FREQUENCY OF ERRORS IN PROTEIN BIOSYNTHESIS. , 1963, The Biochemical journal.

[12]  D. Koshland Application of a Theory of Enzyme Specificity to Protein Synthesis. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[13]  D. Dix,et al.  Accuracy of protein biosynthesis. A kinetic study of the reaction of poly(U)-programmed ribosomes with a leucyl-tRNA2-elongation factor Tu-GTP complex. , 1982, The Journal of biological chemistry.

[14]  J. Puglisi,et al.  Effect of mutations in the A site of 16 S rRNA on aminoglycoside antibiotic-ribosome interaction. , 1999, Journal of molecular biology.

[15]  S. Strobel,et al.  A single adenosine with a neutral pKa in the ribosomal peptidyl transferase center. , 2000, Science.

[16]  C. Post,et al.  Reexamination of induced fit as a determinant of substrate specificity in enzymatic reactions. , 1995, Biochemistry.

[17]  M. Ehrenberg,et al.  Mutations in 23 S ribosomal RNA perturb transfer RNA selection and can lead to streptomycin dependence. , 1994, Journal of molecular biology.

[18]  M Yarus,et al.  Transfer RNA structure and coding specificity. I. Evidence that a D-arm mutation reduces tRNA dissociation from the ribosome. , 1989, Journal of molecular biology.

[19]  K. Lieberman,et al.  Mutations in the peptidyl transferase region of E. coli 23S rRNA affecting translational accuracy. , 1994, Nucleic acids research.

[20]  M. Ehrenberg,et al.  Dissociation rate of cognate peptidyl-tRNA from the A-site of hyper-accurate and error-prone ribosomes. , 1994, European journal of biochemistry.

[21]  M. Yarus,et al.  Reading frame selection and transfer RNA anticodon loop stacking. , 1987, Science.

[22]  V. Ramakrishnan,et al.  Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics , 2000, Nature.

[23]  C. Kurland,et al.  Ribosome mutants with altered accuracy translate with reduced processivity. , 1995, Journal of molecular biology.

[24]  T. Pape,et al.  Induced fit in initial selection and proofreading of aminoacyl‐tRNA on the ribosome , 1999, The EMBO journal.

[25]  A. Potapov A stereospecific mechanism for the aminoacyl‐tRNA selection at the ribosome , 1982, FEBS letters.

[26]  C. Kurland,et al.  Codon‐specific missense errors in vivo. , 1983, The EMBO journal.

[27]  R. Gutell,et al.  Genetic and comparative analyses reveal an alternative secondary structure in the region of nt 912 of Escherichia coli 16S rRNA. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[28]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[29]  A E Dahlberg,et al.  A conformational switch in Escherichia coli 16S ribosomal RNA during decoding of messenger RNA. , 1997, Science.

[30]  M. Culbertson,et al.  Mutations in elongation factor EF-1 alpha affect the frequency of frameshifting and amino acid misincorporation in Saccharomyces cerevisiae. , 1988, Genetics.

[31]  H. Noller,et al.  Interaction of elongation factors EF-G and EF-Tu with a conserved loop in 23S RNA , 1988, Nature.

[32]  C. Kurland,et al.  Functional interactions between mutated forms of ribosomal proteins S4, S5 and S12. , 1986, Biochimie.

[33]  K. Johnson,et al.  Conformational coupling in DNA polymerase fidelity. , 1993, Annual review of biochemistry.

[34]  M Yarus Proofreading, NTPases and translation: constraints on accurate biochemistry. , 1992, Trends in biochemical sciences.

[35]  S Thirup,et al.  Crystal Structure of the Ternary Complex of Phe-tRNAPhe, EF-Tu, and a GTP Analog , 1995, Science.

[36]  H. Noller,et al.  Evidence for functional interaction between elongation factor Tu and 16S ribosomal RNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Puglisi,et al.  Paromomycin binding induces a local conformational change in the A-site of 16 S rRNA. , 1998, Journal of molecular biology.

[38]  A. Fersht Structure and mechanism in protein science , 1998 .

[39]  J. Hopfield Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[40]  J. Puglisi,et al.  Recognition of the codon-anticodon helix by ribosomal RNA. , 1999, Science.

[41]  H. Noller,et al.  Mapping the inside of the ribosome with an RNA helical ruler. , 1997, Science.

[42]  Gabriel Waksman,et al.  Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation , 1998, The EMBO journal.

[43]  R. Weiss,et al.  Towards a genetic dissection of the basis of triplet decoding, and its natural subversion: programmed reading frame shifts and hops. , 1991, Annual review of genetics.

[44]  M Yarus,et al.  Translational efficiency of transfer RNA's: uses of an extended anticodon. , 1982, Science.

[45]  M. Yarus,et al.  tRNA structure and ribosomal function. II. Interaction between anticodon helix and other tRNA mutations. , 1994, Journal of molecular biology.

[46]  Control of basal-level codon misreading in Escherichia coli. , 1984, Biochemical and biophysical research communications.

[47]  R. Lührmann,et al.  Decoding at the ribosomal A site: antibiotics, misreading and energy of aminoacyl-tRNA binding. , 1987, Biochimie.

[48]  R. Thompson,et al.  The rate of cleavage of GTP on the binding of Phe-tRNA.elongation factor Tu.GTP to poly(U)-programmed ribosomes of Escherichia coli. , 1985, The Journal of biological chemistry.

[49]  James R. Kiefer,et al.  Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal , 1998, Nature.

[50]  M. Ehrenberg,et al.  Is there proofreading during polypeptide synthesis? , 1982, The EMBO journal.

[51]  M. Yarus,et al.  tRNA on the Ribosome: a Waggle Theory , 1995 .

[52]  S. Goto,et al.  Analysis of translational fidelity of ribosomes with protamine messenger RNA as a template. , 1985, Biochemistry.

[53]  P. Mitchell,et al.  Identification of intermolecular RNA cross-links at the subunit interface of the Escherichia coli ribosome. , 1992, Biochemistry.

[54]  M. Yarus,et al.  The translational efficiency of tRNA is a property of the anticodon arm. , 1986, The Journal of biological chemistry.

[55]  T. Earnest,et al.  X-ray crystal structures of 70S ribosome functional complexes. , 1999, Science.

[56]  Gavrilova Lp,et al.  The excess GTP hydrolyzed during mistranslation is expended at the stage of EF-Tu-promoted binding of non-cognate aminoacyl-tRNA , 1986 .

[57]  J. Gallant,et al.  Mistranslation in E. coli , 1977, Cell.

[58]  R. Thompson,et al.  The accuracy of protein biosynthesis is limited by its speed: high fidelity selection by ribosomes of aminoacyl-tRNA ternary complexes containing GTP[gamma S]. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[59]  R. Brimacombe,et al.  Visualization of elongation factor Tu on the Escherichia coli ribosome , 1997, Nature.

[60]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[61]  K A Johnson,et al.  Mechanism of inhibition of HIV-1 reverse transcriptase by nonnucleoside inhibitors , 1995, Science.

[62]  T. Pape,et al.  Conformational switch in the decoding region of 16S rRNA during aminoacyl-tRNA selection on the ribosome , 2000, Nature Structural Biology.

[63]  M. Rodnina,et al.  Transient conformational states of aminoacyl-tRNA during ribosome binding catalyzed by elongation factor Tu. , 1994, Biochemistry.

[64]  T. Pape,et al.  Initial Binding of the Elongation Factor Tu·GTP·Aminoacyl-tRNA Complex Preceding Codon Recognition on the Ribosome (*) , 1996, The Journal of Biological Chemistry.

[65]  C. ThompsonRobert EFTu provides an internal kinetic standard for translational accuracy , 1988 .

[66]  H. Noller,et al.  RNA-protein interactions in 30S ribosomal subunits: folding and function of 16S rRNA. , 1989, Science.

[67]  D. Crothers,et al.  On the physical basis for ambiguity in genetic coding interactions. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[68]  M Yarus,et al.  tRNA structure and ribosomal function. I. tRNA nucleotide 27-43 mutations enhance first position wobble. , 1994, Journal of molecular biology.

[69]  D. Crothers,et al.  Studies of the complex between transfer RNAs with complementary anticodons. I. Origins of enhanced affinity between complementary triplets. , 1976, Journal of molecular biology.

[70]  R. Lührmann,et al.  Decoding at the ribosomal A site. The effect of a defined codon-anticodon mismatch upon the behavior of bound aminoacyl transfer RNA. , 1984, The Journal of biological chemistry.

[71]  H. Noller,et al.  Binding of tRNA to the ribosomal A and P sites protects two distinct sets of nucleotides in 16 S rRNA. , 1990, Journal of molecular biology.

[72]  H. Moine,et al.  Mutations in helix 34 of Escherichia coli 16 S ribosomal RNA have multiple effects on ribosome function and synthesis. , 1994, Journal of molecular biology.

[73]  R. Rosenberger,et al.  The accuracy of Qβ RNA translation , 1984 .

[74]  O. Uhlenbeck,et al.  Intact aminoacyl-tRNA is required to trigger GTP hydrolysis by elongation factor Tu on the ribosome. , 2000, Biochemistry.

[75]  A. E. Dahlberg,et al.  The involvement of two distinct regions of 23 S ribosomal RNA in tRNA selection. , 1995, Journal of molecular biology.

[76]  K. Nierhaus,et al.  Solution of the ribosome riddle: how the ribosome selects the correct aminoacyl‐tRNA out of 41 similar contestants , 1993, Molecular microbiology.

[77]  R. Goody,et al.  Human immunodeficiency virus reverse transcriptase substrate-induced conformational changes and the mechanism of inhibition by nonnucleoside inhibitors. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[78]  Eric T. Kool,et al.  A specific partner for abasic damage in DNA , 1999, Nature.

[79]  Poul Nissen,et al.  Placement of protein and RNA structures into a 5 Å-resolution map of the 50S ribosomal subunit , 1999, Nature.

[80]  R. Weiss,et al.  Ribosome gymnastics—Degree of difficulty 9.5, style 10.0 , 1990, Cell.

[81]  S. Doublié,et al.  The mechanism of action of T7 DNA polymerase. , 1998, Current opinion in structural biology.

[82]  M. Rodnina,et al.  Site-directed mutagenesis of Thermus thermophilus elongation factor Tu. Replacement of His85, Asp81 and Arg300. , 1995, European journal of biochemistry.

[83]  M. Ehrenberg,et al.  Rate of elongation of polyphenylalanine in vitro. , 1982, European journal of biochemistry.

[84]  J. Frank,et al.  Major rearrangements in the 70S ribosomal 3D structure caused by a conformational switch in 16S ribosomal RNA , 1999, The EMBO journal.

[85]  J. Reeve,et al.  Mistranslation of the mRNA encoding bacteriophage T7 0.3 protein. , 1984, The Journal of biological chemistry.

[86]  D. K. Hawley,et al.  Transcriptional Fidelity and Proofreading by RNA Polymerase II , 1998, Cell.

[87]  M. Yarus,et al.  Mutation in the D arm enables a suppressor with a CUA anticodon to read both amber and ochre codons in Escherichia coli. , 1986, Journal of molecular biology.

[88]  E. Kool,et al.  A thymidine triphosphate shape analog lacking Watson-Crick pairing ability is replicated with high sequence selectivity. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[89]  H. Noller,et al.  Selective perturbation of G530 of 16 S rRNA by translational miscoding agents and a streptomycin-dependence mutation in protein S12. , 1994, Journal of molecular biology.

[90]  J. F. Atkins,et al.  Mutants of elongation factor Tu promote ribosomal frameshifting and nonsense readthrough. , 1987, The EMBO journal.

[91]  H. Noller,et al.  Ribosome-catalyzed peptide-bond formation with an A-site substrate covalently linked to 23S ribosomal RNA. , 1998, Science.

[92]  K. Nierhaus The allosteric three-site model for the ribosomal elongation cycle: features and future. , 1990, Biochemistry.

[93]  S. Doublié,et al.  Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution , 1998, Nature.

[94]  R. Thompson,et al.  Proofreading of the codon-anticodon interaction on ribosomes. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[95]  Daniel Herschlag,et al.  The role of induced fit and conformational changes of enzymes in specificity and catalysis , 1988 .

[96]  R. Green,et al.  Base-pairing between 23S rRNA and tRNA in the ribosomal A site. , 1999, Molecular cell.

[97]  P. Farabaugh,et al.  How translational accuracy influences reading frame maintenance , 1999, The EMBO journal.

[98]  M. Ehrenberg,et al.  The accuracy of codon recognition by polypeptide release factors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[99]  M. Rodnina,et al.  Codon‐dependent conformational change of elongation factor Tu preceding GTP hydrolysis on the ribosome. , 1995, The EMBO journal.

[100]  L. Gorini Ribosomal discrimination of tRNAs. , 1971, Nature: New biology.

[101]  D. Hirsh Tryptophan transfer RNA as the UGA suppressor. , 1971, Journal of molecular biology.

[102]  C. Thomas,et al.  Decoding fidelity at the ribosomal A and P sites: influence of mutations in three different regions of the decoding domain in 16S rRNA. , 1997, Nucleic acids research.

[103]  D. V. Van Ryk,et al.  Structural changes in the 530 loop of Escherichia coli 16S rRNA in mutants with impaired translational fidelity. , 1995, Nucleic acids research.

[104]  L. Brakier-Gingras,et al.  Comparison of the misreading induced by streptomycin and neomycin. , 1981, Biochimica et biophysica acta.

[105]  T. Pape,et al.  The G222D mutation in elongation factor Tu inhibits the codon‐induced conformational changes leading to GTPase activation on the ribosome. , 1996, The EMBO journal.

[106]  M Yarus,et al.  Proofreading, NTPases and translation: successful increase in specificity. , 1992, Trends in biochemical sciences.

[107]  P. V. von Hippel,et al.  Multiple RNA polymerase conformations and GreA: control of the fidelity of transcription. , 1993, Science.

[108]  W. V. Shaw,et al.  Missense translation errors in Saccharomyces cerevisiae. , 1998, Journal of molecular biology.

[109]  H. Noller,et al.  The 530 loop of 16S rRNA: a signal to EF-Tu? , 1994, Trends in genetics : TIG.

[110]  M. Brink,et al.  Specialized ribosomes allow for the study of mutations in functionally important regions in 16 S rRNA, without affecting cell growth. The identification of functional regions in the central domain of 16S rRNA. , 1994, Journal of molecular biology.

[111]  H. Noller,et al.  Mutations in ribosomal proteins S4 and S12 influence the higher order structure of 16 S ribosomal RNA. , 1989, Journal of molecular biology.