Optimizing Image Registration by Mutually Exclusive Scale Components

Local optimum has been one of the most difficult problems in image registration notwithstanding the extensive research effort that has been put into solving it. Local optimums occur when a portion of patterns in the floating image coincide with a portion of patterns in the reference image even though the two images are not entirely matched. Existing hierarchical or multi-scale methods suffer from this problem mainly because some redundant information that causes local optimums appears in multiple scales. We propose to avoid it by decomposing an image into several mutually exclusive scale components so that minimal redundant information is present. Our method is evaluated and compared with existing methods using high resolution satellite imagery where thousands of local optimum traps are hidden. We show that our method has significant improvement over existing solutions in both robustness and efficiency.

[1]  W. Eric L. Grimson,et al.  Adaptive Segmentation of MRI Data , 1995, CVRMed.

[2]  Max A. Viergever,et al.  Mutual-information-based registration of medical images: a survey , 2003, IEEE Transactions on Medical Imaging.

[3]  Stepán Obdrzálek,et al.  Local affine frames for wide-baseline stereo , 2002, Object recognition supported by user interaction for service robots.

[4]  Daniel P. Huttenlocher,et al.  Comparing Images Using the Hausdorff Distance , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[6]  Matthew A. Brown,et al.  Automatic Panoramic Image Stitching using Invariant Features , 2007, International Journal of Computer Vision.

[7]  Tony F. Chan,et al.  Aspects of Total Variation Regularized L[sup 1] Function Approximation , 2005, SIAM J. Appl. Math..

[8]  Wotao Yin,et al.  Second-order Cone Programming Methods for Total Variation-Based Image Restoration , 2005, SIAM J. Sci. Comput..

[9]  Max H. M. Costa,et al.  Automatic registration of satellite images , 1997, Proceedings X Brazilian Symposium on Computer Graphics and Image Processing.

[10]  Wotao Yin,et al.  Background correction for cDNA microarray images using the TV+L1 model , 2005, Bioinform..

[11]  C. Schmid,et al.  Indexing based on scale invariant interest points , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[12]  Wotao Yin,et al.  Image Cartoon-Texture Decomposition and Feature Selection Using the Total Variation Regularized L1 Functional , 2005, VLSM.

[13]  Nikos Paragios,et al.  Matching Distance Functions: A Shape-to-Area Variational Approach for Global-to-Local Registration , 2002, ECCV.

[14]  Tony F. Chan,et al.  Structure-Texture Image Decomposition—Modeling, Algorithms, and Parameter Selection , 2006, International Journal of Computer Vision.

[15]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[16]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[17]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[18]  Max A. Viergever,et al.  A survey of medical image registration , 1998, Medical Image Anal..

[19]  P. Anandan,et al.  Hierarchical Model-Based Motion Estimation , 1992, ECCV.

[20]  B Likar,et al.  Automatic extraction of corresponding points for the registration of medical images. , 1999, Medical physics.

[21]  J. L. Moigne Parallel registration of multisensor remotely sensed imagery using wavelet coefficients , 1994 .

[22]  Ramakant Nevatia,et al.  Matching Images Using Linear Features , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Dorin Comaniciu,et al.  Total variation models for variable lighting face recognition , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Simon R. Arridge,et al.  A survey of hierarchical non-linear medical image registration , 1999, Pattern Recognit..

[25]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[26]  R. J. Althof,et al.  A rapid and automatic image registration algorithm with subpixel accuracy , 1997, IEEE Transactions on Medical Imaging.

[27]  William Woolsey Johnson Singular Solutions of Differential Equations of the First Order , 1877 .

[28]  Azriel Rosenfeld,et al.  Two-Stage Template Matching , 1977, IEEE Transactions on Computers.

[29]  Thomas S. Huang,et al.  A New Coarse-to-Fine Framework for 3D Brain MR Image Registration , 2005, CVBIA.

[30]  Harpreet S. Sawhney,et al.  Registration of video to geo-referenced imagery , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[31]  A. Bijaoui,et al.  Geometrical registration of images: the multiresolution approach , 1993 .

[32]  Richard P. Wildes,et al.  Video georegistration: algorithm and quantitative evaluation , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.