Low complexity dense motion estimation using phase correlation

We propose a low-complexity dense motion estimation scheme particularly attractive for real-time video applications. Our scheme is based on overlapped block-based motion estimation using phase correlation at critical pixel locations. These form an irregularly sampled grid capturing salient motion features of a scene. The dense vector field is obtained by applying normalized convolution on the irregular grid. Our experiments show that our scheme provides reliable sub-pixel accuracy motion vectors corresponding to actual scene motion, outperforms differential and phase-based methods and yields comparable performance to more complex and time consuming robust motion estimation techniques.

[1]  Hans Knutsson,et al.  Continuous normalized convolution , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[2]  Michael Spann,et al.  Robust optical flow estimation based on a sparse motion trajectory set , 2003, IEEE Trans. Image Process..

[3]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[4]  Alessandro Verri,et al.  Against Quantitative Optical Flow , 1987 .

[5]  Michael J. Black,et al.  A framework for the robust estimation of optical flow , 1993, 1993 (4th) International Conference on Computer Vision.

[6]  Vasileios Argyriou,et al.  Performance study of gradient correlation for sub-pixel motion estimation in the frequency domain , 2005 .

[7]  Michael J. Black,et al.  The Dense Estimation of Motion and Appearance in Layers , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[8]  G. A. Thomas,et al.  Television motion measurement for DATV and other applications , 1987 .

[9]  Roberta Piroddi,et al.  Gradient-Adaptive Normalized Convolution , 2008, IEEE Signal Processing Letters.

[10]  William J. Christmas,et al.  Orientation Correlation , 2002, BMVC.

[11]  Berthold K. P. Horn Robot vision , 1986, MIT electrical engineering and computer science series.

[12]  Ikram E. Abdou,et al.  Practical approach to the registration of multiple frames of video images , 1998, Electronic Imaging.

[13]  Jake K. Aggarwal,et al.  On the computation of motion from sequences of images-A review , 1988, Proc. IEEE.

[14]  Marcel Worring,et al.  Dense motion estimation using regularization constraints on local parametric models , 2004, IEEE Transactions on Image Processing.

[15]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[16]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[17]  Y. J. Tejwani,et al.  Robot vision , 1989, IEEE International Symposium on Circuits and Systems,.

[18]  Jitendra Malik,et al.  Robust computation of optical flow in a multi-scale differential framework , 2005, International Journal of Computer Vision.

[19]  C. Westin,et al.  Filtering of uncertain irregularly sampled multidimensional data , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[20]  Patrick Bouthemy,et al.  Multimodal Estimation of Discontinuous Optical Flow using Markov Random Fields , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  C. Westin,et al.  Normalized and differential convolution , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[22]  Lucas J. van Vliet,et al.  Normalized Averaging Using Adaptive Applicability Functions with Applications in Image Reconstruction from Sparsely and Randomly Sampled Data , 2003, SCIA.

[23]  Roberto Battiti,et al.  Computing optical flow across multiple scales: An adaptive coarse-to-fine strategy , 1991, International Journal of Computer Vision.

[24]  Vasileios Argyriou,et al.  A Study of Sub-pixel Motion Estimation using Phase Correlation , 2006, BMVC.

[25]  Abbas El Gamal,et al.  Optical flow estimation using high frame rate sequences , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[26]  C. Westin A Tensor Framework for Multidimensional Signal Processing , 1994 .

[27]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[28]  C. D. Kuglin,et al.  Video-Rate Image Correlation Processor , 1977, Optics & Photonics.

[29]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[30]  J. Kittler,et al.  Robust motion analysis , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[31]  A. Verri,et al.  A computational approach to motion perception , 1988, Biological Cybernetics.