Interactions of Mesona chinensis Benth polysaccharides with different polysaccharides to fabricate food hydrogels: A review

[1]  J. Kokini,et al.  Encapsulation of tannins and tannin-rich plant extracts by complex coacervation to improve their physicochemical properties and biological activities: A review , 2022, Critical reviews in food science and nutrition.

[2]  Yuanxing Wang,et al.  Fabrication of Zein/Mesona chinensis Polysaccharide Nanoparticles: Physical Characteristics and Delivery of Quercetin. , 2022, ACS applied bio materials.

[3]  J. Li,et al.  Phytochemical compositions, health-promoting properties and food applications of crabapples: A review. , 2022, Food chemistry.

[4]  L. Jiang,et al.  Effect of calcium chloride on heat-induced Mesona chinensis polysaccharide-whey protein isolation gels: Gel properties and interactions , 2022, LWT.

[5]  X. Yue,et al.  Improvement of Properties of Chestnut Starch Gels Using Dual Effects: Combination of the Mesona chinensis Benth Polysaccharide and Sodium Chloride , 2021, ACS Food Science & Technology.

[6]  Jinwang Li,et al.  Eggshell powder improves the gel properties and microstructure of pea starch-Mesona chinensis Benth polysaccharide gels , 2021, Food Hydrocolloids.

[7]  Hang Liu,et al.  Effect of inulin on pasting, thermal, rheological properties and in vitro digestibility of pea starch gel. , 2021, International journal of biological macromolecules.

[8]  Jianhua Xie,et al.  Preparation and characterization of hyacinth bean starch film incorporated with TiO2 nanoparticles and Mesona chinensis Benth polysaccharide. , 2021, International journal of biological macromolecules.

[9]  Jing Chen,et al.  Polyphaenolic profiling, antioxidant properties, and inhibition of α-glucosidase of Mesona chinensis benth from Southern China , 2021 .

[10]  Jinwang Li,et al.  Mesona chinensis polysaccharides promote molecular crosslinking and gel formation of debranched waxy maize starch , 2021 .

[11]  Jianhua Xie,et al.  Construction and characterization of Mesona chinensis polysaccharide-chitosan hydrogels, role of chitosan deacetylation degree. , 2021, Carbohydrate polymers.

[12]  L. Jiang,et al.  Acid/alkali shifting of Mesona chinensis polysaccharide-whey protein isolate gels: Characterization and formation mechanism. , 2021, Food chemistry.

[13]  L. Jiang,et al.  Effect of acid/alkali shifting on function, gelation properties, and microstructure of Mesona chinensis polysaccharide-whey protein isolate gels , 2021 .

[14]  Lijun Sun,et al.  Applications of mixed polysaccharide-protein systems in fabricating multi-structures of binary food gels—A review , 2021 .

[15]  Jianhua Xie,et al.  Mesona chinensis polysaccharide on the thermal, structural and digestibility properties of waxy and normal maize starches , 2021 .

[16]  Jianhua Xie,et al.  Interactions between tapioca starch and Mesona chinensis polysaccharide: Effects of urea and NaCl , 2021 .

[17]  Yi Chen,et al.  Sulfated Mesona chinensis Benth polysaccharide enhance the immunomodulatory activities of cyclophosphamide-treated mice , 2021 .

[18]  Jianhua Xie,et al.  The role of alkali in sweet potato starch-Mesona chinensis Benth polysaccharide gels: Gelation, rheological and structural properties. , 2020, International journal of biological macromolecules.

[19]  Q. Li,et al.  Evaluation of morphological and phytochemical characteristics of Mesona chinensis populations in southern China , 2020 .

[20]  Jianhua Xie,et al.  Effect of maize, potato, and pea starches with Mesona chinensis polysaccharide on pasting, gelatinization properties, granular morphology and digestion , 2020 .

[21]  S. Drusch,et al.  Effect of protein aggregation on rheological properties of pea protein gels , 2020, Food Hydrocolloids.

[22]  Jianhua Xie,et al.  Gelation characteristics of Mesona chinensis polysaccharide-maize starches gels: Influences of KCl and NaCl , 2020 .

[23]  L. Jiang,et al.  Effects of Mesona chinensis polysaccharide on the thermostability, gelling properties, and molecular forces of whey protein isolate gels. , 2020, Carbohydrate polymers.

[24]  Lijun Sun,et al.  An overview of classifications, properties of food polysaccharides and their links to applications in improving food textures , 2020 .

[25]  Jianhua Xie,et al.  Interaction between rice starch and Mesona chinensis Benth polysaccharide gels: Pasting and gelling properties. , 2020, Carbohydrate polymers.

[26]  Jianhua Xie,et al.  Role of salt ions and molecular weights on the formation of Mesona chinensis polysaccharide-chitosan polyelectrolyte complex hydrogel. , 2020, Food chemistry.

[27]  M. Suphantharika,et al.  Encapsulation of lycopene in emulsions and hydrogel beads using dual modified rice starch: Characterization, stability analysis and release behaviour during in-vitro digestion , 2020 .

[28]  Yi Chen,et al.  Dual modifications on the gelatinization, textural, and morphology properties of pea starch by sodium carbonate and Mesona chinensis polysaccharide , 2020 .

[29]  Jianhua Xie,et al.  Effect of Mesona chinensis polysaccharide on the retrogradation properties of maize and waxy maize starches during storage , 2020 .

[30]  Chao Zhang,et al.  Effects of molecular interactions in debranched high amylose starch on digestibility and hydrogel properties , 2020 .

[31]  Yue Yu,et al.  Mesona chinensis Benth polysaccharides protect against oxidative stress and immunosuppression in cyclophosphamide-treated mice via MAPKs signal transduction pathways. , 2020, International journal of biological macromolecules.

[32]  H. Baijnath,et al.  The effect of soaking, steaming, and dehydration on the microstructure, physicochemical properties and in vitro starch digestibility of flour produced from Lablab purpureus (L.) Sweet (hyacinth bean) , 2020 .

[33]  Jianhua Xie,et al.  Effect of Mesona chinensis polysaccharide on pasting, rheological and structural properties of corn starches varying in amylose contents. , 2020, Carbohydrate polymers.

[34]  L. Jiang,et al.  Effects of Mesona chinensis Benth polysaccharide on physicochemical and rheological properties of sweet potato starch and its interactions , 2020 .

[35]  L. Jiang,et al.  Effect of different Mesona chinensis polysaccharides on pasting, gelation, structural properties and in vitro digestibility of tapioca starch-Mesona chinensis polysaccharides gels , 2020 .

[36]  Tomy J. Gutiérrez,et al.  Self-Assembled Carbohydrate Polymers for Food Applications: A Review. , 2019, Comprehensive reviews in food science and food safety.

[37]  V. Karageorgiou,et al.  Preparation of model starch complex hydrogels , 2019, Food Hydrocolloids.

[38]  S. Hussain,et al.  Use of Hydrocolloid Gums to Modify the Pasting, Thermal, Rheological, and Textural Properties of Sweet Potato Starch , 2019, International Journal of Polymer Science.

[39]  Pingwei Wen,et al.  Sulfated modification enhanced the antioxidant activity of Mesona chinensis Benth polysaccharide and its protective effect on cellular oxidative stress. , 2019, International journal of biological macromolecules.

[40]  T. Nicolai Gelation of food protein-protein mixtures. , 2019, Advances in colloid and interface science.

[41]  L. Matia-Merino,et al.  The interactions between wheat starch and Mesona chinensis polysaccharide: A study using solid-state NMR. , 2019, Food chemistry.

[42]  R. Moreira,et al.  Starch hydrogels from discarded chestnuts produced under different temperature‐time gelatinisation conditions , 2019, International Journal of Food Science & Technology.

[43]  L. Jiang,et al.  Physicochemical, rheological and thermal properties of Mesona chinensis polysaccharides obtained by sodium carbonate assisted and cellulase assisted extraction. , 2019, International journal of biological macromolecules.

[44]  Wenjun Wang,et al.  Effects of Cyclocarya paliurus polysaccharide on lipid metabolism-related genes DNA methylation in rats. , 2019, International journal of biological macromolecules.

[45]  Jianhua Xie,et al.  Effect of sodium carbonate on the gelation, rheology, texture and structural properties of maize starch-Mesona chinensis polysaccharide gel , 2019, Food Hydrocolloids.

[46]  Hailing Zhang,et al.  Effects of calcium or sodium ions on the properties of whey protein isolate-lotus root amylopectin composite gel , 2019, Food Hydrocolloids.

[47]  L. Matia-Merino,et al.  The effect of gel structure on the in vitro digestibility of wheat starch-Mesona chinensis polysaccharide gels. , 2019, Food & function.

[48]  L. Matia-Merino,et al.  The role of calcium in wheat starch-Mesona chinensis polysaccharide gels: Rheological properties, in vitro digestibility and enzyme inhibitory activities , 2019, LWT.

[49]  L. Jiang,et al.  Effect of high-pressure microfluidization treatment on the physicochemical properties and antioxidant activities of polysaccharide from Mesona chinensis Benth. , 2018, Carbohydrate polymers.

[50]  Jianhua Xie,et al.  Effect of Mesona chinensis polysaccharide on the pasting, thermal and rheological properties of wheat starch. , 2018, International journal of biological macromolecules.

[51]  L. Matia-Merino,et al.  Molecular interactions in composite wheat starch-Mesona chinensis polysaccharide gels: Rheological, textural, microstructural and retrogradation properties , 2018, Food Hydrocolloids.

[52]  M. Xie,et al.  An acidic heteropolysaccharide from Mesona chinensis: Rheological properties, gelling behavior and texture characteristics. , 2018, International journal of biological macromolecules.

[53]  Chaomin Yin,et al.  Optimization of enzymes-microwave-ultrasound assisted extraction of Lentinus edodes polysaccharides and determination of its antioxidant activity. , 2018, International journal of biological macromolecules.

[54]  S. Jafari,et al.  Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems , 2017 .

[55]  B. Hamaker,et al.  Physicochemical characterization, antioxidant activity of polysaccharides from Mesona chinensis Benth and their protective effect on injured NCTC-1469 cells induced by H2O2. , 2017, Carbohydrate polymers.

[56]  L. Matia-Merino,et al.  Understanding the interaction between wheat starch and Mesona chinensis polysaccharide , 2017 .

[57]  Chuanli Hou,et al.  Comparative study on the physicochemical properties of pea, chickpea, and wheat starch gels in the presence of sweeteners , 2017 .

[58]  Bao Zhang,et al.  Effects of oligosaccharides on pasting, thermal and rheological properties of sweet potato starch. , 2017, Food chemistry.

[59]  Yu-Sheng Wang,et al.  Retardant effect of sodium alginate on the retrogradation properties of normal cornstarch and anti-retrogradation mechanism , 2017 .

[60]  M. Xie,et al.  Polysaccharide from Mesona chinensis: Extraction optimization, physicochemical characterizations and antioxidant activities. , 2017, International journal of biological macromolecules.

[61]  Gareth R. Williams,et al.  Structural and enzyme kinetic studies of retrograded starch: Inhibition of α-amylase and consequences for intestinal digestion of starch , 2017, Carbohydrate polymers.

[62]  S. Matsukawa,et al.  NMR study on the network structure of a mixed gel of kappa and iota carrageenans. , 2016, Carbohydrate polymers.

[63]  Shu-Han Chuang,et al.  Hypolipidaemic function of Hsian-tsao tea (Mesona procumbens Hemsl.): Working mechanisms and active components , 2016 .

[64]  S. Nie,et al.  Advances on Bioactive Polysaccharides from Medicinal Plants , 2016, Critical reviews in food science and nutrition.

[65]  A. Kelly,et al.  Chemistry, structure, functionality and applications of rice starch , 2016 .

[66]  D. Mcclements,et al.  Simulated gastrointestinal fate of lipids encapsulated in starch hydrogels: Impact of normal and high amylose corn starch. , 2015, Food research international.

[67]  F. Zhu,et al.  Physicochemical properties, molecular structure, and uses of sweetpotato starch , 2014 .

[68]  S. Adisakwattana,et al.  Consumption of Mesona chinensis attenuates postprandial glucose and improves antioxidant status induced by a high carbohydrate meal in overweight subjects. , 2014, The American journal of Chinese medicine.

[69]  S. Al-Deyab,et al.  Preparation of poly(acrylic acid)/starch hydrogel and its application for cadmium ion removal from aqueous solutions , 2014 .

[70]  E. Abdel-Halim Preparation of starch/poly(N,N-Diethylaminoethyl methacrylate) hydrogel and its use in dye removal from aqueous solutions , 2013 .

[71]  Xueming Xu,et al.  Analysis of volatile compounds of Mesona Blumes gum/rice extrudates via GC-MS and electronic nose , 2011 .

[72]  J. Bemiller,et al.  Pasting, paste, and gel properties of starch–hydrocolloid combinations , 2011 .

[73]  Richard F. Tester,et al.  Physico-chemical properties of potato starches , 2011 .

[74]  E. G. Ferrer,et al.  Hydrocolloid interaction with water, protein, and starch in wheat dough. , 2011, Journal of agricultural and food chemistry.

[75]  Xianfeng Du,et al.  Effect of polysaccharides on gelatinization and retrogradation of wheat starch , 2008 .

[76]  F. Tao,et al.  Isolation and characterization of an acidic polysaccharide from Mesona Blumes gum , 2008 .

[77]  Zhengyu Jin,et al.  Chemical Composition and Some Rheological Properties of Mesona Blumes Gum , 2007 .

[78]  C. Chau,et al.  The development of regulations of Chinese herbal medicines for both medicinal and food uses , 2006 .

[79]  S. Chao,et al.  Effects of salts on the thermal reversibility of starch and hsian-tsao (Mesona procumbens Hemsl) leaf gum mixed system. , 2000 .