Waveform Preconditioning for Clutter Rejection in Multipath for Sparse Distributed Apertures

The idea of preconditioning transmit waveforms for optimal clutter rejection in radar imaging is presented. Waveform preconditioning involves determining a map on the space of transmit waveforms, and then applying this map to the waveforms before transmission. The work applies to systems with an arbitrary number of transmit- and receive-antenna elements, and makes no assumptions about the elements being co-located. Waveform preconditioning for clutter rejection achieves efficient use of power and computational resources by distributing power over a frequency band in an effective way and by eliminating clutter filtering in receive processing.

[1]  J.P. Costas,et al.  A study of a class of detection waveforms having nearly ideal range—Doppler ambiguity properties , 1983, Proceedings of the IEEE.

[2]  M. Salazar-Palma,et al.  A survey of various propagation models for mobile communication , 2003 .

[3]  Alexander B. Yakovlev,et al.  Introductory Functional Analysis , 2002 .

[4]  Joseph R. Guerci,et al.  Enhanced target detection and identification via optimised radar transmission pulse shape , 2001 .

[5]  R. Sivaswamy,et al.  Multiphase Complementary Codes , 1978, IEEE Trans. Inf. Theory.

[6]  Mark R. Bell Information theory and radar waveform design , 1993, IEEE Trans. Inf. Theory.

[7]  R. Sivaswamy Digital and Analog Subcomplementary Sequences for Pulse Compression , 1978, IEEE Transactions on Aerospace and Electronic Systems.

[8]  Dante C. Youla,et al.  Optimum transmit-receiver design in the presence of signal-dependent interference and channel noise , 1999, Conference Record of the Thirty-Third Asilomar Conference on Signals, Systems, and Computers (Cat. No.CH37020).

[9]  M. Cheney,et al.  Wide-band pulse-echo imaging with distributed apertures in multi-path environments , 2008 .

[10]  M. Cheney,et al.  Wide-band pulse-echo imaging with distributed apertures in multi-path environments , 2008, 2008 IEEE Radar Conference.

[11]  J. Tabrikian,et al.  Target Detection and Localization Using MIMO Radars and Sonars , 2006, IEEE Transactions on Signal Processing.

[12]  Ahmed H. Tewfik,et al.  Waveform selection in radar target classification , 2000, IEEE Trans. Inf. Theory.

[13]  Robert L. Frank,et al.  Polyphase codes with good nonperiodic correlation properties , 1963, IEEE Trans. Inf. Theory.

[14]  S. Golomb,et al.  Constructions and properties of Costas arrays , 1984, Proceedings of the IEEE.

[15]  Can Evren Yarman,et al.  Synthetic-aperture inversion in the presence of noise and clutter , 2006 .

[16]  Mark R. Bell,et al.  Diversity Waveform Sets for Delay-Doppler Imaging , 1998, IEEE Trans. Inf. Theory.

[17]  Harold Naparst,et al.  Dense target signal processing , 1991, IEEE Trans. Inf. Theory.

[18]  C. L. Chiang,et al.  An introduction to stochastic processes and their applications , 1978 .

[19]  Alexander M. Haimovich,et al.  Spatial Diversity in Radars—Models and Detection Performance , 2006, IEEE Transactions on Signal Processing.

[20]  Richard Klemm,et al.  Space-time adaptive processing , 1998 .

[21]  Birsen Yazici,et al.  Wideband Extended Range-Doppler Imaging and Waveform Design in the Presence of Clutter and Noise , 2006, IEEE Transactions on Information Theory.

[22]  H. Miyakawa,et al.  Matched-Transmission Technique for Channels With Intersymbol Interference , 1972, IEEE Trans. Commun..

[23]  Solomon W. Golomb,et al.  Algebraic Constructions for Costas Arrays , 1984, J. Comb. Theory, Ser. A.

[24]  B. Reddy,et al.  Introductory Functional Analysis , 1998 .

[25]  V. Edwards Scattering Theory , 1973, Nature.

[26]  Dag T. Gjessing Target adaptive matched illumination radar : principles & applications , 1986 .

[27]  G.D. Forney,et al.  Combined equalization and coding using precoding , 1991, IEEE Communications Magazine.

[28]  Chieh-Fu Chang,et al.  Frequency-coded waveforms for enhanced delay-Doppler resolution , 2003, IEEE Trans. Inf. Theory.

[29]  Calvin H. Wilcox,et al.  The Synthesis Problem for Radar Ambiguity Functions , 1991 .

[30]  M. Tomlinson New automatic equaliser employing modulo arithmetic , 1971 .