Temperature dependent Raman and photoluminescence of vertical WS 2 /MoS 2 monolayer heterostructures

Heterostructures from two-dimensional transition-metal dichalcogenides MX 2 have emerged as a hot topic in recent years due to their various fascinating properties. Here, we investigated the temperature dependent Raman and photoluminescence (PL) spectra in vertical stacked WS 2 /MoS 2 monolayer heterostructures. Our result shows that both E 12g and A 1g modes of WS 2 and MoS 2 vary linearly with temperature increasing from 300 to 642 K. The PL measurement also reveals strong temperature dependencies of the PL intensity and peak position. The activation energy of the thermal quenching of the PL emission has been found to be equal to 69.6 meV. The temperature dependence of the peak energy well follows the band- gap shrinkage of bulk semiconductor. 2016 Science Press. Published by Elsevier B.V. and Science Press. All rights reserved.

[1]  H. Zeng,et al.  2D materials via liquid exfoliation: a review on fabrication and applications , 2015 .

[2]  Jun Lou,et al.  Vertical and in-plane heterostructures from WS2/MoS2 monolayers. , 2014, Nature materials.

[3]  C. Fotakis,et al.  Intense femtosecond photoexcitation of bulk and monolayer MoS2 , 2014, 1501.02929.

[4]  Sefaattin Tongay,et al.  Ultrafast charge transfer in atomically thin MoS₂/WS₂ heterostructures. , 2014, Nature nanotechnology.

[5]  Z. Mi,et al.  Exciton kinetics, quantum efficiency, and efficiency droop of monolayer MoS₂ light-emitting devices. , 2014, Nano letters.

[6]  M. Zdrojek,et al.  Temperature-dependent nonlinear phonon shifts in a supported MoS2 monolayer. , 2014, ACS applied materials & interfaces.

[7]  Sefaattin Tongay,et al.  Tuning interlayer coupling in large-area heterostructures with CVD-grown MoS2 and WS2 monolayers. , 2014, Nano letters.

[8]  D. Late,et al.  Temperature dependent Raman spectroscopy of chemically derived few layer MoS2 and WS2 nanosheets , 2014 .

[9]  S. Larentis,et al.  Band offset and negative compressibility in graphene-MoS2 heterostructures. , 2014, Nano letters.

[10]  D. Late,et al.  Temperature dependent phonon shifts in single-layer WS(2). , 2014, ACS applied materials & interfaces.

[11]  J. Simpson,et al.  Thermal conductivity of monolayer molybdenum disulfide obtained from temperature-dependent Raman spectroscopy. , 2014, ACS nano.

[12]  P. Ajayan,et al.  Quantitative analysis of the temperature dependency in Raman active vibrational modes of molybdenum disulfide atomic layers. , 2013, Nanoscale.

[13]  Jun Zhang,et al.  Anomalous frequency trends in MoS 2 thin films attributed to surface effects , 2013, 1308.6393.

[14]  Xu Cui,et al.  Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. , 2013, ACS nano.

[15]  P. Ajayan,et al.  Temperature-dependent phonon shifts in monolayer MoS2 , 2013, 1307.2447.

[16]  K. Novoselov,et al.  Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films , 2013, Science.

[17]  Jean-Christophe Charlier,et al.  Identification of individual and few layers of WS2 using Raman Spectroscopy , 2013, Scientific Reports.

[18]  H. Zeng,et al.  Two-dimensional semiconductors: recent progress and future perspectives , 2013 .

[19]  Hua Zhang,et al.  The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. , 2013, Nature chemistry.

[20]  A. Kis,et al.  Nonvolatile memory cells based on MoS2/graphene heterostructures. , 2013, ACS nano.

[21]  Magnetoelectric effects and valley-controlled spin quantum gates in transition metal dichalcogenide bilayers. , 2013, Nature communications.

[22]  Jun Zhang,et al.  Interlayer breathing and shear modes in few-trilayer MoS2 and WSe2. , 2013, Nano letters.

[23]  Seung Joo Lee,et al.  Large current modulation and spin-dependent tunneling of vertical graphene/MoS2 heterostructures. , 2013, ACS nano.

[24]  Aaron M. Jones,et al.  Electrical tuning of valley magnetic moment through symmetry control in bilayer MoS2 , 2012, 1208.6069.

[25]  Qing Hua Wang,et al.  Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. , 2012, Nature nanotechnology.

[26]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[27]  Wang Yao,et al.  Valley polarization in MoS2 monolayers by optical pumping. , 2012, Nature nanotechnology.

[28]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[29]  T. Korn,et al.  Low-temperature photocarrier dynamics in monolayer MoS2 , 2011, 1106.2951.

[30]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[31]  Changgu Lee,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[32]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[33]  Akira Ohtomo,et al.  Radiative and nonradiative recombination processes in lattice-matched (Cd,Zn)O/(Mg,Zn)O multiquantum wells , 2000 .

[34]  J. Massies,et al.  Temperature dependence of the radiative and nonradiative recombination time in GaAs/AlxGa1-xAs quantum-well structures. , 1991, Physical review. B, Condensed matter.

[35]  K. O'Donnell,et al.  Temperature dependence of semiconductor band gaps , 1991 .

[36]  Nuggehalli M. Ravindra,et al.  Temperature dependence of the energy gap in semiconductors , 1979 .

[37]  H. G. Smith,et al.  Lattice dynamics of hexagonal Mo S 2 studied by neutron scattering , 1975 .