An inviscid regularization for the surface quasi-geostrophic equation
暂无分享,去创建一个
[1] E. S. Titi,et al. Global well-posedness of the three-dimensional viscous and inviscid simplified Bardina turbulence models , 2006 .
[2] P. Constantin,et al. On the critical dissipative quasi-geostrophic equation , 2001 .
[3] G. Gustafson,et al. Boundary Value Problems of Mathematical Physics , 1998 .
[4] Andrew J. Majda,et al. Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar , 1994 .
[5] Diego Cordoba,et al. Nonexistence of simple hyperbolic blow-up for the quasi-geostrophic equation , 1998, math/9811184.
[6] L. E. Fraenkel,et al. NAVIER-STOKES EQUATIONS (Chicago Lectures in Mathematics) , 1990 .
[7] R. A. Silverman,et al. The Mathematical Theory of Viscous Incompressible Flow , 1972 .
[8] Andrew J. Majda,et al. A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow , 1996 .
[9] Hantaek Bae. Navier-Stokes equations , 1992 .
[10] P. Constantin,et al. Front formation in an active scalar equation. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[11] A. Majda,et al. Vorticity and incompressible flow , 2001 .
[12] Norbert Schorghofer,et al. Nonsingular surface quasi-geostrophic flow , 1998, math/9805027.
[13] Andrew J. Majda,et al. Vorticity and Incompressible Flow: An Introduction to Vortex Dynamics for Incompressible Fluid Flows , 2001 .
[14] J. Pedlosky. Geophysical Fluid Dynamics , 1979 .
[15] 川口 光年,et al. O. A. Ladyzhenskaya: The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach Sci. Pub. New York-London, 1963, 184頁, 15×23cm, 3,400円. , 1964 .
[16] R. Temam. Navier-Stokes Equations , 1977 .