Double-Channel Bistatic SAR System With Spaceborne Illuminator for 2-D and 3-D SAR Remote Sensing

This paper presents a double-channel hybrid bistatic synthetic aperture radar (SAR) system. It can be implemented with the available illuminator (e.g., spaceborne and airborne SAR systems) to acquire the 2-D and 3-D microwave images for remote-sensing applications. This system can be used as a test system for the validation of complex bistatic acquisitions, novel synchronization algorithms, and advanced imaging techniques. In this paper, we will demonstrate the time and phase synchronization strategies, fast time-domain imaging algorithm, 2-D bistatic SAR, and 3-D bistatic stereo radargrammetry in SAR images. Based on the proposed bistatic system, the acquired bistatic image has a much better sensitivity than its monostatic counterpart, which will facilitate the detection and recognition of targets based on their characteristic and bistatic scattering behaviors. Finally, the experiment results highlight the differences between monotatic and bistatic SAR images.

[1]  G. Krieger,et al.  Spaceborne bi- and multistatic SAR: potential and challenges , 2006 .

[2]  Ian G. Cumming,et al.  A Two-Dimensional Spectrum for Bistatic SAR Processing Using Series Reversion , 2007, IEEE Geoscience and Remote Sensing Letters.

[3]  Jaime Hueso Gonzalez,et al.  TanDEM-X: A satellite formation for high-resolution SAR interferometry , 2007 .

[4]  Florian Behner,et al.  HITCHHIKER - Hybrid Bistatic High Resolution SAR Experiment using a Stationary Receiver and TerraSAR-X Transmitter , 2010 .

[5]  Joachim H. G. Ender,et al.  Bistatic SAR Experiments With PAMIR and TerraSAR-X—Setup, Processing, and Image Results , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[6]  Lars M. H. Ulander,et al.  Synthetic-aperture radar processing using fast factorized back-projection , 2003 .

[7]  Didier Massonnet,et al.  Capabilities and limitations of the interferometric cartwheel , 2001, IEEE Trans. Geosci. Remote. Sens..

[8]  Tat Soon Yeo,et al.  New applications of nonlinear chirp scaling in SAR data processing , 2001, IEEE Trans. Geosci. Remote. Sens..

[9]  A. Monti Guarnieri,et al.  Sentinel 1 SAR interferometry applications: The outlook for sub millimeter measurements , 2012 .

[10]  Sigurd Huber,et al.  Performance Comparison of Reflector- and Planar-Antenna Based Digital Beam-Forming SAR , 2009 .

[11]  W. Kenneth Jenkins,et al.  Convolution backprojection image reconstruction for spotlight mode synthetic aperture radar , 1992, IEEE Trans. Image Process..

[12]  Ian G. Cumming,et al.  Processing of Azimuth-Invariant Bistatic SAR Data Using the Range Doppler Algorithm , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Joachim H. G. Ender,et al.  Focusing Bistatic SAR Data in Airborne/Stationary Configuration , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Otmar Loffeld,et al.  SAR Experiments in a Bistatic Hybrid Configuration for Generating PolInSAR Data with TerraSAR-X Illumination , 2010 .

[15]  Joachim H. G. Ender,et al.  Processing the Azimuth-Variant Bistatic SAR Data by Using Monostatic Imaging Algorithms Based on Two-Dimensional Principle of Stationary Phase , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Antonio Moccia,et al.  Performance of Stereoradargrammetric Methods Applied to Spaceborne Monostatic–Bistatic Synthetic Aperture Radar , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[17]  J. Wasowski,et al.  Using COSMO/SkyMed X-band and ENVISAT C-band SAR interferometry for landslides analysis , 2012 .

[18]  M. Cherniakov,et al.  Bistatic radar : emerging technology , 2008 .

[19]  Gerhard Krieger,et al.  Bistatic TerraSAR-X/F-SAR Spaceborne–Airborne SAR Experiment: Description, Data Processing, and Results , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[20]  Otmar Loffeld,et al.  Models and useful relations for bistatic SAR processing , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[21]  Tazio Strozzi,et al.  TerraSAR-X reveals the impact of the mobile barrier works on Venice coastland stability , 2009 .

[22]  Paco López-Dekker,et al.  Phase Synchronization and Doppler Centroid Estimation in Fixed Receiver Bistatic SAR Systems , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Riccardo Lanari,et al.  Application of the SBAS-DInSAR technique to fault creep: A case study of the Hayward fault, California , 2007 .